Hierarchical Deep Click Feature Prediction for Fine-Grained Image Recognition

The click feature of an image, defined as the user click frequency vector of the image on a predefined word vocabulary, is known to effectively reduce the semantic gap for fine-grained image recognition. Unfortunately, user click frequency data are usually absent in practice. It remains challenging...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 2 vom: 05. Feb., Seite 563-578
1. Verfasser: Yu, Jun (VerfasserIn)
Weitere Verfasser: Tan, Min, Zhang, Hongyuan, Rui, Yong, Tao, Dacheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM299920046
003 DE-627
005 20231225101406.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2019.2932058  |2 doi 
028 5 2 |a pubmed24n0999.xml 
035 |a (DE-627)NLM299920046 
035 |a (NLM)31380745 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yu, Jun  |e verfasserin  |4 aut 
245 1 0 |a Hierarchical Deep Click Feature Prediction for Fine-Grained Image Recognition 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 28.03.2022 
500 |a Date Revised 31.05.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a The click feature of an image, defined as the user click frequency vector of the image on a predefined word vocabulary, is known to effectively reduce the semantic gap for fine-grained image recognition. Unfortunately, user click frequency data are usually absent in practice. It remains challenging to predict the click feature from the visual feature, because the user click frequency vector of an image is always noisy and sparse. In this paper, we devise a Hierarchical Deep Word Embedding (HDWE) model by integrating sparse constraints and an improved RELU operator to address click feature prediction from visual features. HDWE is a coarse-to-fine click feature predictor that is learned with the help of an auxiliary image dataset containing click information. It can therefore discover the hierarchy of word semantics. We evaluate HDWE on three dog and one bird image datasets, in which Clickture-Dog and Clickture-Bird are utilized as auxiliary datasets to provide click data, respectively. Our empirical studies show that HDWE has 1) higher recognition accuracy, 2) a larger compression ratio, and 3) good one-shot learning ability and scalability to unseen categories 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Tan, Min  |e verfasserin  |4 aut 
700 1 |a Zhang, Hongyuan  |e verfasserin  |4 aut 
700 1 |a Rui, Yong  |e verfasserin  |4 aut 
700 1 |a Tao, Dacheng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 2 vom: 05. Feb., Seite 563-578  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:2  |g day:05  |g month:02  |g pages:563-578 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2019.2932058  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 2  |b 05  |c 02  |h 563-578