Mechanistic Study of Protein Adsorption on Mesoporous TiO2 in Aqueous Buffer Solutions

Protein adsorption is of fundamental importance for bioseparation engineering applications. In this work, a series of mesoporous TiO2 with various geometric structures and different aqueous buffer solutions were prepared as platforms to investigate the effects of the surface geometry and ionic stren...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 35(2019), 34 vom: 27. Aug., Seite 11037-11047
1. Verfasser: Huangfu, Changan (VerfasserIn)
Weitere Verfasser: Dong, Yihui, Ji, Xiaoyan, Wu, Na, Lu, Xiaohua
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Buffers titanium dioxide 15FIX9V2JP Serum Albumin, Bovine 27432CM55Q Titanium D1JT611TNE
Beschreibung
Zusammenfassung:Protein adsorption is of fundamental importance for bioseparation engineering applications. In this work, a series of mesoporous TiO2 with various geometric structures and different aqueous buffer solutions were prepared as platforms to investigate the effects of the surface geometry and ionic strength on the protein adsorptive behavior. The surface geometry of the TiO2 was found to play a dominant role in the protein adsorption capacity when the ionic strength of buffer solutions is very low. With the increase in ionic strength, the effect of the geometric structure on the protein adsorption capacity reduced greatly. The change of ionic strength has the highest significant effect on the mesoporous TiO2 with large pore size compared with that with small pore size. The interaction between the protein and TiO2 measured with atomic force microscopy further demonstrated that the adhesion force induced by the surface geometry reduced with the increase in the ionic strength. These findings were used to guide the detection of the retention behavior of protein by high-performance liquid chromatography, providing a step forward toward understanding the protein adsorption for predicting and controlling the chromatographic separation of proteins
Beschreibung:Date Completed 13.08.2020
Date Revised 13.08.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.9b01354