Low-fluence blue light-induced phosphorylation of Zmphot1 mediates the first positive phototropism

© The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Experimental Biology.

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 70(2019), 20 vom: 24. Okt., Seite 5929-5941
1. Verfasser: Suzuki, Hiromi (VerfasserIn)
Weitere Verfasser: Koshiba, Tomokazu, Fujita, Chiharu, Yamauchi, Yoshio, Kimura, Taro, Isobe, Toshiaki, Sakai, Tatsuya, Taoka, Masato, Okamoto, Takashi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Arabidopsis thaliana Zea mays Zmphot1 coleoptile first positive phototropism low-fluence blue light phosphoproteomics phototropin1 Arabidopsis Proteins
Beschreibung
Zusammenfassung:© The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Phototropin1 (phot1) perceives low- to high-fluence blue light stimuli and mediates both the first and second positive phototropisms. High-fluence blue light is known to induce autophosphorylation of phot1, leading to the second positive phototropism. However, the phosphorylation status of phot1 by low-fluence blue light that induces the first positive phototropism had not been observed. Here, we conducted a phosphoproteomic analysis of maize coleoptiles to investigate the fluence-dependent phosphorylation status of Zmphot1. High-fluence blue light induced phosphorylation of Zmphot1 at several sites. Notably, low-fluence blue light significantly increased the phosphorylation level of Ser291 in Zmphot1. Furthermore, Ser291-phosphorylated and Ser369Ser376-diphosphorylated peptides were found to be more abundant in the low-fluence blue light-irradiated sides than in the shaded sides of coleoptiles. The roles of these phosphorylation events in phototropism were explored by heterologous expression of ZmPHOT1 in the Arabidopsis thaliana phot1phot2 mutant. The first positive phototropism was restored in wild-type ZmPHOT1-expressing plants; however, plants expressing S291A-ZmPHOT1 or S369AS376A-ZmPHOT1 showed significantly reduced complementation rates. All transgenic plants tested in this study exhibited a normal second positive phototropism. These findings provide the first indication that low-fluence blue light induces phosphorylation of Zmphot1 and that this induced phosphorylation is crucial for the first positive phototropism
Beschreibung:Date Completed 17.08.2020
Date Revised 17.08.2020
published: Print
Citation Status MEDLINE
ISSN:1460-2431
DOI:10.1093/jxb/erz344