Unsupervised Online Video Object Segmentation With Motion Property Understanding

Unsupervised video object segmentation aims to automatically segment moving objects over an unconstrained video without any user annotation. So far, only few unsupervised online methods have been reported in the literature, and their performance is still far from satisfactory because the complementa...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 29(2020) vom: 29., Seite 237-249
1. Verfasser: Zhuo, Tao (VerfasserIn)
Weitere Verfasser: Cheng, Zhiyong, Zhang, Peng, Wong, Yongkang, Kankanhalli, Mohan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM299807827
003 DE-627
005 20231225101140.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2930152  |2 doi 
028 5 2 |a pubmed24n0999.xml 
035 |a (DE-627)NLM299807827 
035 |a (NLM)31369377 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhuo, Tao  |e verfasserin  |4 aut 
245 1 0 |a Unsupervised Online Video Object Segmentation With Motion Property Understanding 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 25.09.2019 
500 |a Date Revised 25.09.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Unsupervised video object segmentation aims to automatically segment moving objects over an unconstrained video without any user annotation. So far, only few unsupervised online methods have been reported in the literature, and their performance is still far from satisfactory because the complementary information from future frames cannot be processed under online setting. To solve this challenging problem, in this paper, we propose a novel unsupervised online video object segmentation (UOVOS) framework by construing the motion property to mean moving in concurrence with a generic object for segmented regions. By incorporating the salient motion detection and the object proposal, a pixel-wise fusion strategy is developed to effectively remove detection noises, such as dynamic background and stationary objects. Furthermore, by leveraging the obtained segmentation from immediately preceding frames, a forward propagation algorithm is employed to deal with unreliable motion detection and object proposals. Experimental results on several benchmark datasets demonstrate the efficacy of the proposed method. Compared to state-of-the-art unsupervised online segmentation algorithms, the proposed method achieves an absolute gain of 6.2%. Moreover, our method achieves better performance than the best unsupervised offline algorithm on the DAVIS-2016 benchmark dataset. Our code is available on the project website: https://www.github.com/visiontao/uovos 
650 4 |a Journal Article 
700 1 |a Cheng, Zhiyong  |e verfasserin  |4 aut 
700 1 |a Zhang, Peng  |e verfasserin  |4 aut 
700 1 |a Wong, Yongkang  |e verfasserin  |4 aut 
700 1 |a Kankanhalli, Mohan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 29(2020) vom: 29., Seite 237-249  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:29  |g year:2020  |g day:29  |g pages:237-249 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2930152  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2020  |b 29  |h 237-249