Multi-Scale Multi-View Deep Feature Aggregation for Food Recognition

Recently, food recognition has received more and more attention in image processing and computer vision for its great potential applications in human health. Most of the existing methods directly extracted deep visual features via convolutional neural networks (CNNs) for food recognition. Such metho...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 29(2020) vom: 29., Seite 265-276
1. Verfasser: Jiang, Shuqiang (VerfasserIn)
Weitere Verfasser: Min, Weiqing, Liu, Linhu, Luo, Zhengdong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM299807800
003 DE-627
005 20231225101140.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2929447  |2 doi 
028 5 2 |a pubmed24n0999.xml 
035 |a (DE-627)NLM299807800 
035 |a (NLM)31369375 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jiang, Shuqiang  |e verfasserin  |4 aut 
245 1 0 |a Multi-Scale Multi-View Deep Feature Aggregation for Food Recognition 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 25.09.2019 
500 |a Date Revised 25.09.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Recently, food recognition has received more and more attention in image processing and computer vision for its great potential applications in human health. Most of the existing methods directly extracted deep visual features via convolutional neural networks (CNNs) for food recognition. Such methods ignore the characteristics of food images and are, thus, hard to achieve optimal recognition performance. In contrast to general object recognition, food images typically do not exhibit distinctive spatial arrangement and common semantic patterns. In this paper, we propose a multi-scale multi-view feature aggregation (MSMVFA) scheme for food recognition. MSMVFA can aggregate high-level semantic features, mid-level attribute features, and deep visual features into a unified representation. These three types of features describe the food image from different granularity. Therefore, the aggregated features can capture the semantics of food images with the greatest probability. For that solution, we utilize additional ingredient knowledge to obtain mid-level attribute representation via ingredient-supervised CNNs. High-level semantic features and deep visual features are extracted from class-supervised CNNs. Considering food images do not exhibit distinctive spatial layout in many cases, MSMVFA fuses multi-scale CNN activations for each type of features to make aggregated features more discriminative and invariable to geometrical deformation. Finally, the aggregated features are more robust, comprehensive, and discriminative via two-level fusion, namely multi-scale fusion for each type of features and multi-view aggregation for different types of features. In addition, MSMVFA is general and different deep networks can be easily applied into this scheme. Extensive experiments and evaluations demonstrate that our method achieves state-of-the-art recognition performance on three popular large-scale food benchmark datasets in Top-1 recognition accuracy. Furthermore, we expect this paper will further the agenda of food recognition in the community of image processing and computer vision 
650 4 |a Journal Article 
700 1 |a Min, Weiqing  |e verfasserin  |4 aut 
700 1 |a Liu, Linhu  |e verfasserin  |4 aut 
700 1 |a Luo, Zhengdong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 29(2020) vom: 29., Seite 265-276  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:29  |g year:2020  |g day:29  |g pages:265-276 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2929447  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2020  |b 29  |h 265-276