Earth-Abundant MoS2 and Cobalt Phosphate Dual Cocatalysts on 1D CdS Nanowires for Boosting Photocatalytic Hydrogen Production

Cocatalysts play a significant role in accelerating the catalytic reactions of semiconductor photocatalyst. In particular, a semiconductor assembled with dual cocatalysts, i.e., reduction and oxidation cocatalysts, can obviously enhance the photocatalytic performance because of the synergistic effec...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 35(2019), 34 vom: 27. Aug., Seite 11056-11065
1. Verfasser: Lu, Kang-Qiang (VerfasserIn)
Weitere Verfasser: Qi, Ming-Yu, Tang, Zi-Rong, Xu, Yi-Jun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Cocatalysts play a significant role in accelerating the catalytic reactions of semiconductor photocatalyst. In particular, a semiconductor assembled with dual cocatalysts, i.e., reduction and oxidation cocatalysts, can obviously enhance the photocatalytic performance because of the synergistic effect of fast consumption of photogenerated electrons and holes simultaneously. However, in most cases, noble metal cocatalysts are employed, which tremendously increases the cost of the photocatalysts and restricts their large-scale applications. Herein, on the platform of one-dimensional (1D) CdS nanowires, we have utilized the earth-abundant dual cocatalysts, MoS2 and cobalt phosphate (Co-Pi), to construct the CdSMoS2@Co-Pi (CMC) core-shell hybrid photocatalysts. In this dual-cocatalyst system, Co-Pi is in a position to expedite the migration of holes from CdS, while MoS2 acts as an electron transporter as well as active sites to accelerate the surface water reduction reaction. Taking the advantages of the dual-cocatalyst system, the prepared CMC hybrid shows an obvious enhancement of both the photoactivity and photostability toward hydrogen production compared with bare 1D CdS nanowires and binary hybrids (CdS@MoS2 and CdS@Co-Pi). This work highlights the promising prospects for rational utilization of earth-abundant dual cocatalysts to design low-cost and efficient hybrids toward boosting photoredox catalysis
Beschreibung:Date Revised 23.09.2019
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.9b01409