Perceptual-Aware Sketch Simplification Based on Integrated VGG Layers

Deep learning has been recently demonstrated as an effective tool for raster-based sketch simplification. Nevertheless, it remains challenging to simplify extremely rough sketches. We found that a simplification network trained with a simple loss, such as pixel loss or discriminator loss, may fail t...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 27(2021), 1 vom: 26. Jan., Seite 178-189
1. Verfasser: Xu, Xuemiao (VerfasserIn)
Weitere Verfasser: Xie, Minshan, Miao, Peiqi, Qu, Wei, Xiao, Wenpeng, Zhang, Huaidong, Liu, Xueting, Wong, Tien-Tsin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM299640248
003 DE-627
005 20231225100756.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2019.2930512  |2 doi 
028 5 2 |a pubmed24n0998.xml 
035 |a (DE-627)NLM299640248 
035 |a (NLM)31352345 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xu, Xuemiao  |e verfasserin  |4 aut 
245 1 0 |a Perceptual-Aware Sketch Simplification Based on Integrated VGG Layers 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 25.11.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Deep learning has been recently demonstrated as an effective tool for raster-based sketch simplification. Nevertheless, it remains challenging to simplify extremely rough sketches. We found that a simplification network trained with a simple loss, such as pixel loss or discriminator loss, may fail to retain the semantically meaningful details when simplifying a very sketchy and complicated drawing. In this paper, we show that, with a well-designed multi-layer perceptual loss, we are able to obtain aesthetic and neat simplification results preserving semantically important global structures as well as fine details without blurriness and excessive emphasis on local structures. To do so, we design a multi-layer discriminator by fusing all VGG feature layers to differentiate sketches and clean lines. The weights used in layer fusing are automatically learned via an intelligent adjustment mechanism. Furthermore, to evaluate our method, we compare our method to state-of-the-art methods through multiple experiments, including visual comparison and intensive user study 
650 4 |a Journal Article 
700 1 |a Xie, Minshan  |e verfasserin  |4 aut 
700 1 |a Miao, Peiqi  |e verfasserin  |4 aut 
700 1 |a Qu, Wei  |e verfasserin  |4 aut 
700 1 |a Xiao, Wenpeng  |e verfasserin  |4 aut 
700 1 |a Zhang, Huaidong  |e verfasserin  |4 aut 
700 1 |a Liu, Xueting  |e verfasserin  |4 aut 
700 1 |a Wong, Tien-Tsin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 27(2021), 1 vom: 26. Jan., Seite 178-189  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:27  |g year:2021  |g number:1  |g day:26  |g month:01  |g pages:178-189 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2019.2930512  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2021  |e 1  |b 26  |c 01  |h 178-189