Xylem-phloem hydraulic coupling explains multiple osmoregulatory responses to salt stress

© 2019 The Authors. New Phytologist © 2019 New Phytologist Trust.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 224(2019), 2 vom: 09. Okt., Seite 644-662
1. Verfasser: Perri, Saverio (VerfasserIn)
Weitere Verfasser: Katul, Gabriel G, Molini, Annalisa
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S. halophytes CO2 enrichment osmoregulation photosynthesis optimization plant-water relations salt stress salt tolerance Water mehr... 059QF0KO0R Sodium Chloride 451W47IQ8X
LEADER 01000naa a22002652 4500
001 NLM299610969
003 DE-627
005 20231225100717.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1111/nph.16072  |2 doi 
028 5 2 |a pubmed24n0998.xml 
035 |a (DE-627)NLM299610969 
035 |a (NLM)31349369 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Perri, Saverio  |e verfasserin  |4 aut 
245 1 0 |a Xylem-phloem hydraulic coupling explains multiple osmoregulatory responses to salt stress 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 11.05.2020 
500 |a Date Revised 30.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2019 The Authors. New Phytologist © 2019 New Phytologist Trust. 
520 |a Salinity is known to affect plant productivity by limiting leaf-level carbon exchange, root water uptake, and carbohydrates transport in the phloem. However, the mechanisms through which plants respond to salt exposure by adjusting leaf gas exchange and xylem-phloem flow are still mostly unexplored. A physically based model coupling xylem, leaf, and phloem flows is here developed to explain different osmoregulation patterns across species. Hydraulic coupling is controlled by leaf water potential, ψl , and determined under four different maximization hypotheses: water uptake (1), carbon assimilation (2), sucrose transport (3), or (4) profit function - i.e. carbon gain minus hydraulic risk. All four hypotheses assume that finite transpiration occurs, providing a further constraint on ψl . With increasing salinity, the model captures different transpiration patterns observed in halophytes (nonmonotonic) and glycophytes (monotonically decreasing) by reproducing the species-specific strength of xylem-leaf-phloem coupling. Salt tolerance thus emerges as plant's capability of differentiating between salt- and drought-induced hydraulic risk, and to regulate internal flows and osmolytes accordingly. Results are shown to be consistent across optimization schemes (1-3) for both halophytes and glycophytes. In halophytes, however, profit-maximization (4) predicts systematically higher ψl than (1-3), pointing to the need of an updated definition of hydraulic cost for halophytes under saline conditions 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
650 4 |a halophytes 
650 4 |a CO2 enrichment 
650 4 |a osmoregulation 
650 4 |a photosynthesis optimization 
650 4 |a plant-water relations 
650 4 |a salt stress 
650 4 |a salt tolerance 
650 7 |a Water  |2 NLM 
650 7 |a 059QF0KO0R  |2 NLM 
650 7 |a Sodium Chloride  |2 NLM 
650 7 |a 451W47IQ8X  |2 NLM 
700 1 |a Katul, Gabriel G  |e verfasserin  |4 aut 
700 1 |a Molini, Annalisa  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t The New phytologist  |d 1979  |g 224(2019), 2 vom: 09. Okt., Seite 644-662  |w (DE-627)NLM09818248X  |x 1469-8137  |7 nnns 
773 1 8 |g volume:224  |g year:2019  |g number:2  |g day:09  |g month:10  |g pages:644-662 
856 4 0 |u http://dx.doi.org/10.1111/nph.16072  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 224  |j 2019  |e 2  |b 09  |c 10  |h 644-662