|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM299512533 |
003 |
DE-627 |
005 |
20231225100509.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2019 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.201903580
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0998.xml
|
035 |
|
|
|a (DE-627)NLM299512533
|
035 |
|
|
|a (NLM)31339207
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Gong, Chuanhui
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Self-Confined Growth of Ultrathin 2D Nonlayered Wide-Bandgap Semiconductor CuBr Flakes
|
264 |
|
1 |
|c 2019
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 30.09.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a 2D planar structures of nonlayered wide-bandgap semiconductors enable distinguished electronic properties, desirable short wavelength emission, and facile construction of 2D heterojunction without lattice match. However, the growth of ultrathin 2D nonlayered materials is limited by their strong covalent bonded nature. Herein, the synthesis of ultrathin 2D nonlayered CuBr nanosheets with a thickness of about 0.91 nm and an edge size of 45 µm via a controllable self-confined chemical vapor deposition method is described. The enhanced spin-triplet exciton (Zf , 2.98 eV) luminescence and polarization-enhanced second-harmonic generation based on the 2D CuBr flakes demonstrate the potential of short-wavelength luminescent applications. Solar-blind and self-driven ultraviolet (UV) photodetectors based on the as-synthesized 2D CuBr flakes exhibit a high photoresponsivity of 3.17 A W-1 , an external quantum efficiency of 1126%, and a detectivity (D*) of 1.4 × 1011 Jones, accompanied by a fast rise time of 32 ms and a decay time of 48 ms. The unique nonlayered structure and novel optical properties of the 2D CuBr flakes, together with their controllable growth, make them a highly promising candidate for future applications in short-wavelength light-emitting devices, nonlinear optical devices, and UV photodetectors
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a CuBr
|
650 |
|
4 |
|a chemical vapor deposition
|
650 |
|
4 |
|a nonlayered
|
650 |
|
4 |
|a self-confined
|
650 |
|
4 |
|a wide-bandgap semiconductors
|
700 |
1 |
|
|a Chu, Junwei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yin, Chujun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yan, Chaoyi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hu, Xiaozong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Qian, Shifeng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hu, Yin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hu, Kai
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Huang, Jianwen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Hongbo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Yang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wangyang, Peihua
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lei, Tianyu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Dai, Liping
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wu, Chunyang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Bo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Chaobo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liao, Min
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhai, Tianyou
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xiong, Jie
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 31(2019), 36 vom: 09. Sept., Seite e1903580
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:31
|g year:2019
|g number:36
|g day:09
|g month:09
|g pages:e1903580
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.201903580
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 31
|j 2019
|e 36
|b 09
|c 09
|h e1903580
|