RESLS : Region and Edge Synergetic Level Set Framework for Image Segmentation

The active contour models with level set evolution have been visited with a vast number of methods for image segmentation. They can be mainly classified into region-based and edge-based models, and it has been validated that the hybrid variants combining both region and edge information can improve...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 29(2020) vom: 17., Seite 57-71
1. Verfasser: Zhang, Weihang (VerfasserIn)
Weitere Verfasser: Wang, Xue, You, Wei, Chen, Junfeng, Dai, Peng, Zhang, Pengbo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM299442551
003 DE-627
005 20231225100338.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2928134  |2 doi 
028 5 2 |a pubmed24n0998.xml 
035 |a (DE-627)NLM299442551 
035 |a (NLM)31331891 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Weihang  |e verfasserin  |4 aut 
245 1 0 |a RESLS  |b Region and Edge Synergetic Level Set Framework for Image Segmentation 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 25.09.2019 
500 |a Date Revised 25.09.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The active contour models with level set evolution have been visited with a vast number of methods for image segmentation. They can be mainly classified into region-based and edge-based models, and it has been validated that the hybrid variants combining both region and edge information can improve the segmentation performance. However, to the best of our knowledge, the theoretical foundation of collaboration mechanism between the region and the edge information is limited. Specifically, most existing hybrid models are just combining all the energy terms together, resulting in great challenges of choosing an appropriate weight coefficient for each term and accommodating different modalities of imaging. To overcome these difficulties, this paper proposes a region and edge synergetic level set framework named RESLS. It provides an approach to construct new hybrid level set models using a normalized intensity indicator function that allows the region information easily embedding into the edge-based model. In this case, the energy weights of region and edge terms can be constrained by the global optimization condition deduced from the framework. Some representative as well as state-of-the-art models are taken as examples to demonstrate the generality of our method. The experiments validate that under the guidance of the optimization condition, the weighting parameter of each term can be reliably chosen. Meanwhile, the segmentation accuracy, robustness, and computational efficiency of RESLS can be improved compared with its component models 
650 4 |a Journal Article 
700 1 |a Wang, Xue  |e verfasserin  |4 aut 
700 1 |a You, Wei  |e verfasserin  |4 aut 
700 1 |a Chen, Junfeng  |e verfasserin  |4 aut 
700 1 |a Dai, Peng  |e verfasserin  |4 aut 
700 1 |a Zhang, Pengbo  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 29(2020) vom: 17., Seite 57-71  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:29  |g year:2020  |g day:17  |g pages:57-71 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2928134  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2020  |b 17  |h 57-71