Supervised Deep Sparse Coding Networks for Image Classification

In this paper, we propose a novel deep sparse coding network (SCN) capable of efficiently adapting its own regularization parameters for a given application. The network is trained end-to-end with a supervised task-driven learning algorithm via error backpropagation. During training, the network lea...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2019) vom: 17. Juli
1. Verfasser: Sun, Xiaoxia (VerfasserIn)
Weitere Verfasser: Nasrabadi, Nasser M, Tran, Trac D
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM299442500
003 DE-627
005 20250225161755.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2928121  |2 doi 
028 5 2 |a pubmed25n0998.xml 
035 |a (DE-627)NLM299442500 
035 |a (NLM)31331886 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sun, Xiaoxia  |e verfasserin  |4 aut 
245 1 0 |a Supervised Deep Sparse Coding Networks for Image Classification 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a In this paper, we propose a novel deep sparse coding network (SCN) capable of efficiently adapting its own regularization parameters for a given application. The network is trained end-to-end with a supervised task-driven learning algorithm via error backpropagation. During training, the network learns both the dictionaries and the regularization parameters of each sparse coding layer so that the reconstructive dictionaries are smoothly transformed into increasingly discriminative representations. In addition, the adaptive regularization also offers the network more flexibility to adjust sparsity levels. Furthermore, we have devised a sparse coding layer utilizing a 'skinny' dictionary. Integral to computational efficiency, these skinny dictionaries compress the high dimensional sparse codes into lower dimensional structures. The adaptivity and discriminability of our fifteen-layer sparse coding network are demonstrated on five benchmark datasets, namely Cifar-10, Cifar-100, STL-10, SVHN and MNIST, most of which are considered difficult for sparse coding models. Experimental results show that our architecture overwhelmingly outperforms traditional one-layer sparse coding architectures while using much fewer parameters. Moreover, our multilayer architecture exploits the benefits of depth with sparse coding's characteristic ability to operate on smaller datasets. In such data-constrained scenarios, our technique demonstrates highly competitive performance compared to the deep neural networks 
650 4 |a Journal Article 
700 1 |a Nasrabadi, Nasser M  |e verfasserin  |4 aut 
700 1 |a Tran, Trac D  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2019) vom: 17. Juli  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2019  |g day:17  |g month:07 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2928121  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2019  |b 17  |c 07