Hyperspectral Images Denoising via Nonconvex Regularized Low-Rank and Sparse Matrix Decomposition

Hyperspectral images (HSIs) are often degraded by a mixture of various types of noise during the imaging process, including Gaussian noise, impulse noise, and stripes. Such complex noise could plague the subsequent HSIs processing. Generally, most HSI denoising methods formulate sparsity optimizatio...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 29(2020) vom: 11., Seite 44-56
1. Verfasser: Xie, Ting (VerfasserIn)
Weitere Verfasser: Li, Shutao, Sun, Bin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM299419266
003 DE-627
005 20231225100309.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2926736  |2 doi 
028 5 2 |a pubmed24n0998.xml 
035 |a (DE-627)NLM299419266 
035 |a (NLM)31329555 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xie, Ting  |e verfasserin  |4 aut 
245 1 0 |a Hyperspectral Images Denoising via Nonconvex Regularized Low-Rank and Sparse Matrix Decomposition 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 27.02.2020 
500 |a Date Revised 27.02.2020 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Hyperspectral images (HSIs) are often degraded by a mixture of various types of noise during the imaging process, including Gaussian noise, impulse noise, and stripes. Such complex noise could plague the subsequent HSIs processing. Generally, most HSI denoising methods formulate sparsity optimization problems with convex norm constraints, which over-penalize large entries of vectors, and may result in a biased solution. In this paper, a nonconvex regularized low-rank and sparse matrix decomposition (NonRLRS) method is proposed for HSI denoising, which can simultaneously remove the Gaussian noise, impulse noise, dead lines, and stripes. The NonRLRS aims to decompose the degraded HSI, expressed in a matrix form, into low-rank and sparse components with a robust formulation. To enhance the sparsity in both the intrinsic low-rank structure and the sparse corruptions, a novel nonconvex regularizer named as normalized ε -penalty, is presented, which can adaptively shrink each entry. In addition, an effective algorithm based on the majorization minimization (MM) is developed to solve the resulting nonconvex optimization problem. Specifically, the MM algorithm first substitutes the nonconvex objective function with the surrogate upper-bound in each iteration, and then minimizes the constructed surrogate function, which enables the nonconvex problem to be solved in the framework of reweighted technique. Experimental results on both simulated and real data demonstrate the effectiveness of the proposed method 
650 4 |a Journal Article 
700 1 |a Li, Shutao  |e verfasserin  |4 aut 
700 1 |a Sun, Bin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 29(2020) vom: 11., Seite 44-56  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:29  |g year:2020  |g day:11  |g pages:44-56 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2926736  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2020  |b 11  |h 44-56