Carbon Dots-Stimulated Amplification of Aggregation-Induced Emission of Size-Tunable Organic Nanoparticles

Carbon dots (CDs)-induced microstructural modulation and amplification of emission intensity of self-aggregated fluorescent organic nanoparticles (FONPs) is a challenging task since CD is a well-known fluorescence quencher. In the present study, we have designed l-tyrosine-tagged hydrophobically (C-...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 35(2019), 32 vom: 13. Aug., Seite 10582-10595
1. Verfasser: Choudhury, Pritam (VerfasserIn)
Weitere Verfasser: Das, Prasanta Kumar
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:Carbon dots (CDs)-induced microstructural modulation and amplification of emission intensity of self-aggregated fluorescent organic nanoparticles (FONPs) is a challenging task since CD is a well-known fluorescence quencher. In the present study, we have designed l-tyrosine-tagged hydrophobically (C-10) tailored naphthalene diimide derivative (NDI-i), which formed FONPs in tetrahydrofuran (THF)-water binary solvent mixture. NDI-i exhibited aggregation-induced emission (AIE) at 580 nm (orange) up to fw = 70 vol % of water in THF via excimer formation in combination with intramolecular charge transfer (ICT) upon excitation at 350 nm. Beyond fw = 70 vol %, the emission intensity gradually reduced up to fw = 99 vol % due to poor water dispersibility of NDI-i FONPs. Doping of hydrophobically (C-2 to C-11 alkyl chain) surface-functionalized CDs (CD-i-iii) within self-aggregates of NDI-i FONPs at fw = 99 vol % resulted in the modulation of both morphology and emission intensity of resulting self-assembled nanoconjugate. In the presence of C-2 alkyl chain tethered CD, the emission intensity of FONP-CD nanohybrid got quenched compared to that of native NDI-i FONPs. The emission intensity of NDI-i FONPs markedly enhanced by 3.6- to 5.0-fold upon inclusion of C-6 and C-11 alkyl chain containing CDs, respectively. Increasing the alkyl chain length on CD surface facilitated the interchain hydrophobic interaction between the organic nanoparticles and surface-functionalized CDs to form larger CD-doped fused FONPs. The extent of ICT between π-donor and π-acceptor residues became more efficient to exhibit enhanced AIE due to the accumulation of more NDI-i around CD surface through interchain hydrophobic interaction. The C-11 alkyl chain containing CD-integrated FONPs showed the brightest orange emission with superior aqueous stability. These water-dispersible, orange-emitting, cytocompatible NDI-i-CD-iii FONPs were explored for long-term bioimaging of mammalian cells
Beschreibung:Date Completed 25.06.2020
Date Revised 25.06.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.9b01631