Super-Resolution for Hyperspectral and Multispectral Image Fusion Accounting for Seasonal Spectral Variability

Image fusion combines data from different heterogeneous sources to obtain more precise information about an underlying scene. Hyperspectral-multispectral (HS-MS) image fusion is currently attracting great interest in remote sensing since it allows the generation of high spatial resolution HS images...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 29(2020) vom: 19., Seite 116-127
1. Verfasser: Borsoi, Ricardo Augusto (VerfasserIn)
Weitere Verfasser: Imbiriba, Tales, Bermudez, Jose Carlos Moreira
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM299414981
003 DE-627
005 20231225100304.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2928895  |2 doi 
028 5 2 |a pubmed24n0998.xml 
035 |a (DE-627)NLM299414981 
035 |a (NLM)31329120 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Borsoi, Ricardo Augusto  |e verfasserin  |4 aut 
245 1 0 |a Super-Resolution for Hyperspectral and Multispectral Image Fusion Accounting for Seasonal Spectral Variability 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 25.09.2019 
500 |a Date Revised 25.09.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Image fusion combines data from different heterogeneous sources to obtain more precise information about an underlying scene. Hyperspectral-multispectral (HS-MS) image fusion is currently attracting great interest in remote sensing since it allows the generation of high spatial resolution HS images and circumventing the main limitation of this imaging modality. Existing HS-MS fusion algorithms, however, neglect the spectral variability often existing between images acquired at different time instants. This time difference causes variations in spectral signatures of the underlying constituent materials due to the different acquisition and seasonal conditions. This paper introduces a novel HS-MS image fusion strategy that combines an unmixing-based formulation with an explicit parametric model for typical spectral variability between the two images. Simulations with synthetic and real data show that the proposed strategy leads to a significant performance improvement under spectral variability and state-of-the-art performance otherwise 
650 4 |a Journal Article 
700 1 |a Imbiriba, Tales  |e verfasserin  |4 aut 
700 1 |a Bermudez, Jose Carlos Moreira  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 29(2020) vom: 19., Seite 116-127  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:29  |g year:2020  |g day:19  |g pages:116-127 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2928895  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2020  |b 19  |h 116-127