HA-CCN : Hierarchical Attention-based Crowd Counting Network

Single image-based crowd counting has recently witnessed increased focus, but many leading methods are far from optimal, especially in highly congested scenes. In this paper, we present Hierarchical Attention-based Crowd Counting Network (HA-CCN) that employs attention mechanisms at various levels t...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2019) vom: 19. Juli
1. Verfasser: Sindagi, Vishwanath A (VerfasserIn)
Weitere Verfasser: Patel, Vishal M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM299414965
003 DE-627
005 20240229162252.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2928634  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM299414965 
035 |a (NLM)31329118 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sindagi, Vishwanath A  |e verfasserin  |4 aut 
245 1 0 |a HA-CCN  |b Hierarchical Attention-based Crowd Counting Network 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Single image-based crowd counting has recently witnessed increased focus, but many leading methods are far from optimal, especially in highly congested scenes. In this paper, we present Hierarchical Attention-based Crowd Counting Network (HA-CCN) that employs attention mechanisms at various levels to selectively enhance the features of the network. The proposed method, which is based on the VGG16 network, consists of a spatial attention module (SAM) and a set of global attention modules (GAM). SAM enhances low-level features in the network by infusing spatial segmentation information, whereas the GAM focuses on enhancing channel-wise information in the higher level layers. The proposed method is a single-step training framework, simple to implement and achieves state-of-the-art results on different datasets. Furthermore, we extend the proposed counting network by introducing a novel set-up to adapt the network to different scenes and datasets via weak supervision using image-level labels. This new set up reduces the burden of acquiring labour intensive point-wise annotations for new datasets while improving the cross-dataset performance 
650 4 |a Journal Article 
700 1 |a Patel, Vishal M  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2019) vom: 19. Juli  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2019  |g day:19  |g month:07 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2928634  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2019  |b 19  |c 07