Robust Low-Rank Tensor Recovery with Rectification and Alignment

Low-rank tensor recovery in the presence of sparse but arbitrary errors is an important problem with many practical applications. In this work, we propose a general framework that recovers low-rank tensors, in which the data can be deformed by some unknown transformations and corrupted by arbitrary...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 43(2021), 1 vom: 22. Jan., Seite 238-255
1. Verfasser: Zhang, Xiaoqin (VerfasserIn)
Weitere Verfasser: Wang, Di, Zhou, Zhengyuan, Ma, Yi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM299414876
003 DE-627
005 20231225100304.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2019.2929043  |2 doi 
028 5 2 |a pubmed24n0998.xml 
035 |a (DE-627)NLM299414876 
035 |a (NLM)31329109 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Xiaoqin  |e verfasserin  |4 aut 
245 1 0 |a Robust Low-Rank Tensor Recovery with Rectification and Alignment 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.12.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Low-rank tensor recovery in the presence of sparse but arbitrary errors is an important problem with many practical applications. In this work, we propose a general framework that recovers low-rank tensors, in which the data can be deformed by some unknown transformations and corrupted by arbitrary sparse errors. We give a unified presentation of the surrogate-based formulations that incorporate the features of rectification and alignment simultaneously, and establish worst-case error bounds of the recovered tensor. In this context, the state-of-the-art methods 'RASL' and 'TILT' can be viewed as two special cases of our work, and yet each only performs part of the function of our method. Subsequently, we study the optimization aspects of the problem in detail by deriving two algorithms, one based on the alternating direction method of multipliers (ADMM) and the other based on proximal gradient. We provide convergence guarantees for the latter algorithm, and demonstrate the performance of the former through in-depth simulations. Finally, we present extensive experimental results on public datasets to demonstrate the effectiveness and efficiency of the proposed framework and algorithms 
650 4 |a Journal Article 
700 1 |a Wang, Di  |e verfasserin  |4 aut 
700 1 |a Zhou, Zhengyuan  |e verfasserin  |4 aut 
700 1 |a Ma, Yi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 43(2021), 1 vom: 22. Jan., Seite 238-255  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:43  |g year:2021  |g number:1  |g day:22  |g month:01  |g pages:238-255 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2019.2929043  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 43  |j 2021  |e 1  |b 22  |c 01  |h 238-255