Density functional theory for molecular and periodic systems using density fitting and continuous fast multipole method : Stress tensor

© 2019 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 40(2019), 29 vom: 05. Nov., Seite 2563-2570
1. Verfasser: Becker, Martin (VerfasserIn)
Weitere Verfasser: Sierka, Marek
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Gaussian basis sets ab initio calculations continuous fast multipole method density fitting density functional theory
LEADER 01000naa a22002652 4500
001 NLM299352420
003 DE-627
005 20231225100138.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.26033  |2 doi 
028 5 2 |a pubmed24n0997.xml 
035 |a (DE-627)NLM299352420 
035 |a (NLM)31322769 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Becker, Martin  |e verfasserin  |4 aut 
245 1 0 |a Density functional theory for molecular and periodic systems using density fitting and continuous fast multipole method  |b Stress tensor 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 04.03.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2019 Wiley Periodicals, Inc. 
520 |a A full implementation of the analytical stress tensor for periodic systems is reported in the TURBOMOLE program package within the framework of Kohn-Sham density functional theory using Gaussian-type orbitals as basis functions. It is the extension of the implementation of analytical energy gradients (Lazarski et al., Journal of Computational Chemistry 2016, 37, 2518-2526) to the stress tensor for the purpose of optimization of lattice vectors. Its key component is the efficient calculation of the Coulomb contribution by combining density fitting approximation and continuous fast multipole method. For the exchange-correlation (XC) part the hierarchical numerical integration scheme (Burow and Sierka, Journal of Chemical Theory and Computation 2011, 7, 3097-3104) is extended to XC weight derivatives and stress tensor. The computational efficiency and favorable scaling behavior of the stress tensor implementation are demonstrated for various model systems. The overall computational effort for energy gradient and stress tensor for the largest systems investigated is shown to be at most two and a half times the computational effort for the Kohn-Sham matrix formation. © 2019 Wiley Periodicals, Inc 
650 4 |a Journal Article 
650 4 |a Gaussian basis sets 
650 4 |a ab initio calculations 
650 4 |a continuous fast multipole method 
650 4 |a density fitting 
650 4 |a density functional theory 
700 1 |a Sierka, Marek  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 40(2019), 29 vom: 05. Nov., Seite 2563-2570  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:40  |g year:2019  |g number:29  |g day:05  |g month:11  |g pages:2563-2570 
856 4 0 |u http://dx.doi.org/10.1002/jcc.26033  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 40  |j 2019  |e 29  |b 05  |c 11  |h 2563-2570