|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM29923570X |
003 |
DE-627 |
005 |
20231225095910.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2019 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1111/gcb.14768
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0997.xml
|
035 |
|
|
|a (DE-627)NLM29923570X
|
035 |
|
|
|a (NLM)31310672
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Yu, Zhen
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Largely underestimated carbon emission from land use and land cover change in the conterminous United States
|
264 |
|
1 |
|c 2019
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 21.11.2019
|
500 |
|
|
|a Date Revised 08.01.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2019 John Wiley & Sons Ltd.
|
520 |
|
|
|a Carbon (C) emission and uptake due to land use and land cover change (LULCC) are the most uncertain term in the global carbon budget primarily due to limited LULCC data and inadequate model capability (e.g., underrepresented agricultural managements). We take the commonly used FAOSTAT-based global Land Use Harmonization data (LUH2) and a new high-resolution multisource harmonized national LULCC database (YLmap) to drive a land ecosystem model (DLEM) in the conterminous United States. We found that recent cropland abandonment and forest recovery may have been overestimated in the LUH2 data derived from national statistics, causing previously reported C emissions from land use have been underestimated due to the definition of cropland and aggregated LULCC signals at coarse resolution. This overestimation leads to a strong C sink (30.3 ± 2.5 Tg C/year) in model simulations driven by LUH2 in the United States during the 1980-2016 period, while we find a moderate C source (13.6 ± 3.5 Tg C/year) when using YLmap. This divergence implies that previous C budget analyses based on the global LUH2 dataset have underestimated C emission in the United States owing to the delineation of suitable cropland and aggregated land conversion signals at coarse resolution which YLmap overcomes. Thus, to obtain more accurate quantification of LULCC-induced C emission and better serve global C budget accounting, it is urgently needed to develop fine-scale country-specific LULCC data to characterize the details of land conversion
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
4 |
|a Research Support, U.S. Gov't, Non-P.H.S.
|
650 |
|
4 |
|a carbon fluxes
|
650 |
|
4 |
|a conterminous United States
|
650 |
|
4 |
|a cropland abandonment
|
650 |
|
4 |
|a cropland expansion
|
650 |
|
4 |
|a forest recovery
|
650 |
|
4 |
|a land use and land cover change
|
650 |
|
7 |
|a Carbon
|2 NLM
|
650 |
|
7 |
|a 7440-44-0
|2 NLM
|
700 |
1 |
|
|a Lu, Chaoqun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Tian, Hanqin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Canadell, Josep G
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Global change biology
|d 1999
|g 25(2019), 11 vom: 28. Nov., Seite 3741-3752
|w (DE-627)NLM098239996
|x 1365-2486
|7 nnns
|
773 |
1 |
8 |
|g volume:25
|g year:2019
|g number:11
|g day:28
|g month:11
|g pages:3741-3752
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1111/gcb.14768
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 25
|j 2019
|e 11
|b 28
|c 11
|h 3741-3752
|