A Deep Information Sharing Network for Multi-Contrast Compressed Sensing MRI Reconstruction

Compressed sensing (CS) theory can accelerate multi-contrast magnetic resonance imaging (MRI) by sampling fewer measurements within each contrast. However, conventional optimization-based reconstruction models suffer several limitations, including a strict assumption of shared sparse support, time-c...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 28(2019), 12 vom: 09. Dez., Seite 6141-6153
1. Verfasser: Sun, Liyan (VerfasserIn)
Weitere Verfasser: Fan, Zhiwen, Fu, Xueyang, Huang, Yue, Ding, Xinghao, Paisley, John
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Contrast Media
LEADER 01000naa a22002652 4500
001 NLM299082539
003 DE-627
005 20231225095548.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2925288  |2 doi 
028 5 2 |a pubmed24n0996.xml 
035 |a (DE-627)NLM299082539 
035 |a (NLM)31295112 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sun, Liyan  |e verfasserin  |4 aut 
245 1 2 |a A Deep Information Sharing Network for Multi-Contrast Compressed Sensing MRI Reconstruction 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 12.02.2020 
500 |a Date Revised 12.02.2020 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Compressed sensing (CS) theory can accelerate multi-contrast magnetic resonance imaging (MRI) by sampling fewer measurements within each contrast. However, conventional optimization-based reconstruction models suffer several limitations, including a strict assumption of shared sparse support, time-consuming optimization, and "shallow" models with difficulties in encoding the patterns contained in massive MRI data. In this paper, we propose the first deep learning model for multi-contrast CS-MRI reconstruction. We achieve information sharing through feature sharing units, which significantly reduces the number of model parameters. The feature sharing unit combines with a data fidelity unit to comprise an inference block, which are then cascaded with dense connections, allowing for efficient information transmission across different depths of the network. Experiments on various multi-contrast MRI datasets show that the proposed model outperforms both state-of-the-art single-contrast and multi-contrast MRI methods in accuracy and efficiency. We demonstrate that improved reconstruction quality can bring benefits to subsequent medical image analysis. Furthermore, the robustness of the proposed model to misregistration shows its potential in real MRI applications 
650 4 |a Journal Article 
650 7 |a Contrast Media  |2 NLM 
700 1 |a Fan, Zhiwen  |e verfasserin  |4 aut 
700 1 |a Fu, Xueyang  |e verfasserin  |4 aut 
700 1 |a Huang, Yue  |e verfasserin  |4 aut 
700 1 |a Ding, Xinghao  |e verfasserin  |4 aut 
700 1 |a Paisley, John  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 28(2019), 12 vom: 09. Dez., Seite 6141-6153  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:28  |g year:2019  |g number:12  |g day:09  |g month:12  |g pages:6141-6153 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2925288  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2019  |e 12  |b 09  |c 12  |h 6141-6153