Droplet Misalignment Limit for Inkjet Printing into Cavities on Textured Surfaces

The control of droplets deposited onto textured surfaces is of great importance for both engineering and medical applications. This research investigates the dynamics of a single droplet deposited into a confined space and its final equilibrium morphology, with emphasis given to droplet deposition u...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 35(2019), 29 vom: 23. Juli, Seite 9564-9571
1. Verfasser: Jackson, Frankie F (VerfasserIn)
Weitere Verfasser: Kubiak, Krzysztof J, Wilson, Mark C T, Molinari, Marco, Stetsyuk, Viacheslav
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:The control of droplets deposited onto textured surfaces is of great importance for both engineering and medical applications. This research investigates the dynamics of a single droplet deposited into a confined space and its final equilibrium morphology, with emphasis given to droplet deposition under print head misalignment, the effect of nonuniform wettability, and deposition of droplets with varying sizes. A multiphase pseudopotential lattice Boltzmann methodology is used to simulate the process of deposition. The print quality is characterized in terms of a parameter referred to as the wetted fraction, which describes the proportion of the cavity that is wetted by the droplet. Our results show how single and multiple axis misalignment affect the final equilibrium morphology, and it was found for comparable configurations that multiaxis misalignment resulted in a higher wetted fraction. Investigations into wettabilities of the substrate and cavity wall revealed how larger ratios of the contact angles between the two enhance the ability for the droplet to self-align within the cavity. Additionally, a range of uniform wettabilities between the substrate and cavity were found, which mitigate against misalignment. Investigations into varying droplet sizes relative to the cavity revealed how misalignment can be compensated for with larger droplets, and limits for filling a cavity with a single drop are defined. Finally, we explore the deposition with misalignment into closely positioned cavities where it is found that the spacing between cavities is a key factor in determining the maximum permissible misalignment
Beschreibung:Date Revised 23.09.2019
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.9b00649