Hopanoids Like Sterols Form Compact but Fluid Films

Hopanoids are pentacyclic molecules present in membranes from some bacteria, recently proposed as sterol surrogates in these organisms. Diplopterol is an abundant hopanoid that, similar to sterols, does not self-aggregate in lamellar structures when pure, but forms monolayers at the air-water interf...

Description complète

Détails bibliographiques
Publié dans:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 35(2019), 30 vom: 30. Juli, Seite 9848-9857
Auteur principal: Mangiarotti, Agustín (Auteur)
Autres auteurs: Galassi, Vanesa V, Puentes, Elida N, Oliveira, Rafael G, Del Pópolo, Mario G, Wilke, Natalia
Format: Article en ligne
Langue:English
Publié: 2019
Accès à la collection:Langmuir : the ACS journal of surfaces and colloids
Sujets:Journal Article Research Support, Non-U.S. Gov't
Description
Résumé:Hopanoids are pentacyclic molecules present in membranes from some bacteria, recently proposed as sterol surrogates in these organisms. Diplopterol is an abundant hopanoid that, similar to sterols, does not self-aggregate in lamellar structures when pure, but forms monolayers at the air-water interface. Here, we analyze the interfacial behavior of pure diplopterol and compare it with sterols from different organisms: cholesterol from mammals, ergosterol from fungi, and stigmasterol from plants. We prepared Langmuir monolayers of the compounds and studied their surface properties using different experimental approaches and molecular dynamics simulations. Our results indicate that the films formed by diplopterol, despite being compact with low mean molecular areas, high surface potentials, and high refractive index, depict shear viscosity values similar to that for fluid films. Altogether, our results reveal that hopanoids have similar interfacial behavior than that of sterols, and thus they may have the capacity of modulating bacterial membrane properties in a similar way sterols do in eukaryotes
Description:Date Completed 26.06.2020
Date Revised 26.06.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.9b01641