3D Printing of Ultralight Biomimetic Hierarchical Graphene Materials with Exceptional Stiffness and Resilience

© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 31(2019), 35 vom: 08. Aug., Seite e1902930
1. Verfasser: Peng, Meiwen (VerfasserIn)
Weitere Verfasser: Wen, Zhen, Xie, Lingjie, Cheng, Jian, Jia, Zheng, Shi, Danli, Zeng, Huajie, Zhao, Bo, Liang, Zhiqiang, Li, Teng, Jiang, Lin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article 3D printing biomimetic materials graphene triboelectric nanogenerators
Beschreibung
Zusammenfassung:© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Biological materials with hierarchical architectures (e.g., a macroscopic hollow structure and a microscopic cellular structure) offer unique inspiration for designing and manufacturing advanced biomimetic materials with outstanding mechanical performance and low density. Most conventional biomimetic materials only benefit from bioinspired architecture at a single length scale (e.g., microscopic material structure), which largely limits the mechanical performance of the resulting materials. There exists great potential to maxime the mechanical performance of biomimetic materials by leveraging a bioinspired hierarchical structure. An ink-based three-dimensional (3D) printing strategy to manufacture an ultralight biomimetic hierarchical graphene material (BHGMs) with exceptionally high stiffness and resilience is demonstrated. By simultaneously engineering 3D-printed macroscopic hollow structures and constructing an ice-crystal-induced cellular microstructure, BHGMs can achieve ultrahigh elasticity and stability at compressive strains up to 95%. Multiscale finite element analyses indicate that the hierarchical structures of BHGMs effectively reduce the macroscopic strain and transform the microscopic compressive deformation into the rotation and bending of the interconnected graphene flakes. This 3D printing strategy demonstrates the great potential that exists for the assembly of other functional materials into hierarchical cellular structures for various applications where high stiffness and resilience at low density are simultaneously required
Beschreibung:Date Revised 30.09.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.201902930