Multiscale Structure Tensor for Improved Feature Extraction and Image Regularization

Regularization methods are used widely in image selective smoothing and edge preserving restoration of noisy images. Traditional methods utilize image gradients within regularization function for controlling the smoothing and can produce artifacts when noise levels are higher. In this paper, we cons...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 28(2019), 12 vom: 15. Dez., Seite 6198-6210
1. Verfasser: Prasath, V B Surya (VerfasserIn)
Weitere Verfasser: Pelapur, Rengarajan, Seetharaman, Guna, Palaniappan, Kannappan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM298790688
003 DE-627
005 20231225094930.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2924799  |2 doi 
028 5 2 |a pubmed24n0995.xml 
035 |a (DE-627)NLM298790688 
035 |a (NLM)31265398 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Prasath, V B Surya  |e verfasserin  |4 aut 
245 1 0 |a Multiscale Structure Tensor for Improved Feature Extraction and Image Regularization 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 09.09.2019 
500 |a Date Revised 09.09.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Regularization methods are used widely in image selective smoothing and edge preserving restoration of noisy images. Traditional methods utilize image gradients within regularization function for controlling the smoothing and can produce artifacts when noise levels are higher. In this paper, we consider a robust image adaptive exponent driven regularization for filtering noisy images with salient feature preservation. Our spatially adaptive variable exponent function depends on a continuous switch based on the eigenvalues of structure tensor which identifies noisy edges, and corners with higher accuracy. Structure tensor eigenvalues encode various image features and we consider a spatially varying continuous map which provides multiscale edge maps of natural images. By embedding the structure tensor-based exponent in a well-defined regularization model, we obtain denoising filters which are capable of obtaining good feature preserving image restoration. The GPU-based implementation computes the edge map in real time at 45-60 frames/s depending on the GPU card. Multiscale structure tensor-based spatially adaptive variable exponent provides reliable edge maps and compared with standard edge detectors it is robust under various noisy conditions. Moreover, filtering based on the multiscale variable exponent map method outperforms L0 sparse gradient-based image smoothing and related filters 
650 4 |a Journal Article 
700 1 |a Pelapur, Rengarajan  |e verfasserin  |4 aut 
700 1 |a Seetharaman, Guna  |e verfasserin  |4 aut 
700 1 |a Palaniappan, Kannappan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 28(2019), 12 vom: 15. Dez., Seite 6198-6210  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:28  |g year:2019  |g number:12  |g day:15  |g month:12  |g pages:6198-6210 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2924799  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2019  |e 12  |b 15  |c 12  |h 6198-6210