Image Recognition by Predicted User Click Feature With Multidomain Multitask Transfer Deep Network

The click feature of an image, defined as a user click count vector based on click data, has been demonstrated to be effective for reducing the semantic gap for image recognition. Unfortunately, most of the traditional image recognition datasets do not contain click data. To address this problem, re...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 28(2019), 12 vom: 15. Dez., Seite 6047-6062
1. Verfasser: Tan, Min (VerfasserIn)
Weitere Verfasser: Yu, Jun, Zhang, Hongyuan, Rui, Yong, Tao, Dacheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM298790602
003 DE-627
005 20231225094930.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2921861  |2 doi 
028 5 2 |a pubmed24n0995.xml 
035 |a (DE-627)NLM298790602 
035 |a (NLM)31265392 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tan, Min  |e verfasserin  |4 aut 
245 1 0 |a Image Recognition by Predicted User Click Feature With Multidomain Multitask Transfer Deep Network 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 09.09.2019 
500 |a Date Revised 09.09.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The click feature of an image, defined as a user click count vector based on click data, has been demonstrated to be effective for reducing the semantic gap for image recognition. Unfortunately, most of the traditional image recognition datasets do not contain click data. To address this problem, researchers have begun to develop a click prediction model using assistant datasets containing click information and have adapted this predictor to a common click-free dataset for different tasks. This method can be customized to our problem, but it has two main limitations: 1) the predicted click feature often performs badly in the recognition task since the prediction model is constructed independently of the subsequent recognition problem and 2) transferring the predictor from one dataset to another is challenging due to the large cross-domain diversity. In this paper, we devise a multitask and multidomain deep network with varied modals (MTMDD-VM) to formulate image recognition and click prediction tasks in a unified framework. Datasets with and without click information are integrated in the training. Furthermore, a nonlinear word embedding with a position-sensitive loss function is designed to discover the visual click correlation. We evaluate the proposed method on three public dog breed image datasets, and we utilize the Clickture-Dog dataset as the auxiliary dataset that provides click data. The experimental results show that: 1) the nonlinear word embedding and position-sensitive loss function largely enhance the predicted click feature in the recognition task, realizing a 32% improvement in accuracy; 2) the multitask learning framework improves accuracies in both image recognition and click prediction; and 3) the unified training using the combined dataset with and without click data further improves the performance. Compared with the state-of-the-art methods, the proposed approach not only performs much better in accuracy but also achieves good scalability and one-shot learning ability 
650 4 |a Journal Article 
700 1 |a Yu, Jun  |e verfasserin  |4 aut 
700 1 |a Zhang, Hongyuan  |e verfasserin  |4 aut 
700 1 |a Rui, Yong  |e verfasserin  |4 aut 
700 1 |a Tao, Dacheng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 28(2019), 12 vom: 15. Dez., Seite 6047-6062  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:28  |g year:2019  |g number:12  |g day:15  |g month:12  |g pages:6047-6062 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2921861  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2019  |e 12  |b 15  |c 12  |h 6047-6062