Providing a Single Ground-Truth for Illuminant Estimation for the ColorChecker Dataset

The ColorChecker dataset is one of the most widely used image sets for evaluating and ranking illuminant estimation algorithms. However, this single set of images has at least 3 different sets of ground-truth (i.e., correct answers) associated with it. In the literature it is often asserted that one...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 42(2020), 5 vom: 15. Mai, Seite 1286-1287
1. Verfasser: Hemrit, Ghalia (VerfasserIn)
Weitere Verfasser: Finlayson, Graham D, Gijsenij, Arjan, Gehler, Peter, Bianco, Simone, Drew, Mark S, Funt, Brian, Shi, Lilong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM298790483
003 DE-627
005 20231225094930.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2019.2919824  |2 doi 
028 5 2 |a pubmed24n0995.xml 
035 |a (DE-627)NLM298790483 
035 |a (NLM)31265383 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hemrit, Ghalia  |e verfasserin  |4 aut 
245 1 0 |a Providing a Single Ground-Truth for Illuminant Estimation for the ColorChecker Dataset 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.04.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The ColorChecker dataset is one of the most widely used image sets for evaluating and ranking illuminant estimation algorithms. However, this single set of images has at least 3 different sets of ground-truth (i.e., correct answers) associated with it. In the literature it is often asserted that one algorithm is better than another when the algorithms in question have been tuned and tested with the different ground-truths. In this short correspondence we present some of the background as to why the 3 existing ground-truths are different and go on to make a new single and recommended set of correct answers. Experiments reinforce the importance of this work in that we show that the total ordering of a set of algorithms may be reversed depending on whether we use the new or legacy ground-truth data 
650 4 |a Journal Article 
700 1 |a Finlayson, Graham D  |e verfasserin  |4 aut 
700 1 |a Gijsenij, Arjan  |e verfasserin  |4 aut 
700 1 |a Gehler, Peter  |e verfasserin  |4 aut 
700 1 |a Bianco, Simone  |e verfasserin  |4 aut 
700 1 |a Drew, Mark S  |e verfasserin  |4 aut 
700 1 |a Funt, Brian  |e verfasserin  |4 aut 
700 1 |a Shi, Lilong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 42(2020), 5 vom: 15. Mai, Seite 1286-1287  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:42  |g year:2020  |g number:5  |g day:15  |g month:05  |g pages:1286-1287 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2019.2919824  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 42  |j 2020  |e 5  |b 15  |c 05  |h 1286-1287