General Method for Synthesizing Transition-Metal Phosphide/N-Doped Carbon Nanomaterials for Hydrogen Evolution

Applications of effective and steady metal catalysts for the hydrogen evolution reaction (HER) via electrolysis of water have a huge potential to relax energy crisis and reduce carbon dioxide emission. Herein, we design a simple, facile, and general approach for the synthesis of a series of transiti...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 35(2019), 28 vom: 16. Juli, Seite 9161-9168
1. Verfasser: Jin, Lunqiang (VerfasserIn)
Weitere Verfasser: Zhang, Xiang, Zhao, Weifeng, Chen, Shengqiu, Shi, Zhenqiang, Wang, Jingxia, Xie, Yi, Liang, Feng, Zhao, Changsheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Applications of effective and steady metal catalysts for the hydrogen evolution reaction (HER) via electrolysis of water have a huge potential to relax energy crisis and reduce carbon dioxide emission. Herein, we design a simple, facile, and general approach for the synthesis of a series of transition-metal phosphide nanoparticles embedded in N-doped carbon (NC) nanomaterials using metal salts, abundantly available hexamethylene diamine tetra(methyl phosphonic acid), and urea as precursors. The resultant transition-metal phosphide nanoparticles can serve as high-efficiency and steady HER catalysts. Particularly, when the current density is 10 mA cm-2, the overpotentials of the obtained RhP2NC are 30, 85, and 70 mV in acid (0.5 M H2SO4), neutral (1 M PBS), and alkaline (1 M KOH) solutions, respectively. Besides, the RhP2@NC exhibits good stability after 10 h in aforementioned solutions. More importantly, it is suited to fabricate other transition-metal phosphide nanoparticles/NC heterostructures by this synthetic strategy. The obtained CoP@NC, FeP@NC, Ni2P@NC, and Cu3P@NC also show relatively high efficiency for HER. Hence, the versatile synthesis strategy opens a new route for the research and fabrication of transition-metal phosphide-based catalysts for HER
Beschreibung:Date Revised 23.09.2019
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.9b01302