Hybrid model for the prediction of municipal solid waste generation in Hangzhou, China

Accurate prediction of municipal solid waste (MSW) generation is necessary for choosing appropriate waste treatment methods and for planning the distribution of disposal facilities. In this study, a hybrid model was established to forecast MSW generation through the combination of the ridge regressi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA. - 1991. - 37(2019), 8 vom: 15. Aug., Seite 781-792
1. Verfasser: Zhang, Zhenying (VerfasserIn)
Weitere Verfasser: Zhang, Yuxiang, Wu, Dazhi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA
Schlagworte:Journal Article GM(1,N) model Municipal solid waste hybrid model influencing factor prediction ridge regression model Solid Waste
LEADER 01000naa a22002652 4500
001 NLM298782308
003 DE-627
005 20231225094912.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1177/0734242X19855434  |2 doi 
028 5 2 |a pubmed24n0995.xml 
035 |a (DE-627)NLM298782308 
035 |a (NLM)31264528 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Zhenying  |e verfasserin  |4 aut 
245 1 0 |a Hybrid model for the prediction of municipal solid waste generation in Hangzhou, China 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 09.09.2019 
500 |a Date Revised 09.09.2019 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Accurate prediction of municipal solid waste (MSW) generation is necessary for choosing appropriate waste treatment methods and for planning the distribution of disposal facilities. In this study, a hybrid model was established to forecast MSW generation through the combination of the ridge regression and GM(1,N) models. The hybrid model is multivariate and involves total urban population, total retail sales of social consumer goods, per capita consumption expenditure of urban areas, tourism, and college graduation. Compared with the constituent models alone, the hybrid model yields higher accuracy, with a mean absolute percentage error (MAPE) of only 2.59%. Through weight allocation and optimal treatment of residuals, the hybrid model also balances the growth trends of the individual models, making the prediction curve smoother. The model coefficients and correlation analysis show that population, economics, and educational factors are influential for waste generation. MSW output in Hangzhou will gradually increase in the future, and is expected to reach 5.12 million tons in 2021. Results can help decision makers to develop the measures and policies of waste management in the future 
650 4 |a Journal Article 
650 4 |a GM(1,N) model 
650 4 |a Municipal solid waste 
650 4 |a hybrid model 
650 4 |a influencing factor 
650 4 |a prediction 
650 4 |a ridge regression model 
650 7 |a Solid Waste  |2 NLM 
700 1 |a Zhang, Yuxiang  |e verfasserin  |4 aut 
700 1 |a Wu, Dazhi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA  |d 1991  |g 37(2019), 8 vom: 15. Aug., Seite 781-792  |w (DE-627)NLM098164791  |x 1096-3669  |7 nnns 
773 1 8 |g volume:37  |g year:2019  |g number:8  |g day:15  |g month:08  |g pages:781-792 
856 4 0 |u http://dx.doi.org/10.1177/0734242X19855434  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 37  |j 2019  |e 8  |b 15  |c 08  |h 781-792