Temperature-Activated PEG Surface Segregation Controls the Protein Repellency of Polymers

Poly(ethylene glycol) (PEG) is widely used to modulate the hydration states of biomaterials and is often applied to produce nonfouling surfaces. Here, we present X-ray scattering data, which show that it is the surface segregation of PEG, not just its presence in the bulk, that makes this happen by...

Description complète

Détails bibliographiques
Publié dans:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 35(2019), 30 vom: 30. Juli, Seite 9769-9776
Auteur principal: Murthy, N Sanjeeva (Auteur)
Autres auteurs: Wang, Wenjie, Sommerfeld, Sven D, Vaknin, David, Kohn, Joachim
Format: Article en ligne
Langue:English
Publié: 2019
Accès à la collection:Langmuir : the ACS journal of surfaces and colloids
Sujets:Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Proteins Serum Albumin, Bovine 27432CM55Q Polyethylene Glycols 3WJQ0SDW1A Fibrinogen 9001-32-5
Description
Résumé:Poly(ethylene glycol) (PEG) is widely used to modulate the hydration states of biomaterials and is often applied to produce nonfouling surfaces. Here, we present X-ray scattering data, which show that it is the surface segregation of PEG, not just its presence in the bulk, that makes this happen by influencing the hydrophilicity of PEG-containing substrates. We demonstrate a temperature-dependent trigger that transforms a PEG-containing substrate from a protein-adsorbing to a protein-repelling state. On films of poly(desaminotyrosyl-tyrosine-co-PEG carbonate) with high (20 wt %) PEG content, in which very little protein adsorption is expected, quartz crystal microbalance data showed significant adsorption of fibrinogen and bovine serum albumin at 8 °C. The surface became protein-repellent at 37.5 °C. When the same polymer was iodinated, the polymer was protein-adsorbent, even when 37 wt % PEG was incorporated into the polymer backbone. This demonstrates that high PEG content by itself is not sufficient to repel proteins. By inhibiting phase separation either with iodine or by lowering the temperature, we show that PEG must phase-separate and bloom to the surface to create an antifouling surface. These results suggest an opportunity to design materials with high PEG content that can be switched from a protein-attractant to a protein-repellent state by inducing phase separation through brief exposure to temperatures above their glass transition temperature
Description:Date Completed 20.07.2020
Date Revised 30.07.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.9b00702