|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM298650924 |
003 |
DE-627 |
005 |
20231225094623.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2019 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TIP.2019.2924168
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0995.xml
|
035 |
|
|
|a (DE-627)NLM298650924
|
035 |
|
|
|a (NLM)31251187
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Wen, Ying
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Incorporation of Structural Tensor and Driving Force Into Log-Demons for Large-Deformation Image Registration
|
264 |
|
1 |
|c 2019
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 09.09.2019
|
500 |
|
|
|a Date Revised 09.09.2019
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Large-deformation image registration is important in theory and application in computer vision, but is a difficult task for non-rigid registration methods. In this paper, we propose a structural Tensor and Driving force-based Log-Demons algorithm for it, named TDLog-Demons for short. The structural tensor of an image is proposed to obtain a highly accurate deformation field. The driving force is proposed to solve the registration issue of large-deformation that often causes Log-Demons to trap into local minima. It is defined as a point correspondence obtained via multisupport-region-order-based gradient histogram descriptor matching on image's boundary points. It is integrated into an exponentially decreasing form with the velocity field of Log-Demons to move the points accurately and to speed up a registration process. Consequently, the driving force-based Log-Demons can well deal with large-deformation image registration. Extensive experiments demonstrate that the TDLog-Demons not only captures large deformations at a high accuracy but also yields a smooth deformation
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Zhang, Le
|e verfasserin
|4 aut
|
700 |
1 |
|
|a He, LiangHua
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhou, MengChu
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|d 1992
|g 28(2019), 12 vom: 28. Dez., Seite 6091-6102
|w (DE-627)NLM09821456X
|x 1941-0042
|7 nnns
|
773 |
1 |
8 |
|g volume:28
|g year:2019
|g number:12
|g day:28
|g month:12
|g pages:6091-6102
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TIP.2019.2924168
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 28
|j 2019
|e 12
|b 28
|c 12
|h 6091-6102
|