Compact and Low-Complexity Binary Feature Descriptor and Fisher Vectors for Video Analytics

In this paper, we propose a compact and low-complexity binary feature descriptor for video analytics. Our binary descriptor encodes the motion information of a spatio-temporal support region into a low-dimensional binary string. The descriptor is based on a binning strategy and a construction that b...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 28(2019), 12 vom: 28. Dez., Seite 6169-6184
1. Verfasser: Leyva, Roberto (VerfasserIn)
Weitere Verfasser: Sanchez, Victor, Li, Chang-Tsun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM298650916
003 DE-627
005 20231225094623.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2922826  |2 doi 
028 5 2 |a pubmed24n0995.xml 
035 |a (DE-627)NLM298650916 
035 |a (NLM)31251186 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Leyva, Roberto  |e verfasserin  |4 aut 
245 1 0 |a Compact and Low-Complexity Binary Feature Descriptor and Fisher Vectors for Video Analytics 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 09.09.2019 
500 |a Date Revised 09.09.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we propose a compact and low-complexity binary feature descriptor for video analytics. Our binary descriptor encodes the motion information of a spatio-temporal support region into a low-dimensional binary string. The descriptor is based on a binning strategy and a construction that binarizes separately the horizontal and vertical motion components of the spatio-temporal support region. We pair our descriptor with a novel Fisher Vector (FV) scheme for binary data to project a set of binary features into a fixed length vector in order to evaluate the similarity between feature sets. We test the effectiveness of our binary feature descriptor with FVs for action recognition, which is one of the most challenging tasks in computer vision, as well as gait recognition and animal behavior clustering. Several experiments on the KTH, UCF50, UCF101, CASIA-B, and TIGdog datasets show that the proposed binary feature descriptor outperforms the state-of-the-art feature descriptors in terms of computational time and memory and storage requirements. When paired with FVs, the proposed feature descriptor attains a very competitive performance, outperforming several state-of-the-art feature descriptors and some methods based on convolutional neural networks 
650 4 |a Journal Article 
700 1 |a Sanchez, Victor  |e verfasserin  |4 aut 
700 1 |a Li, Chang-Tsun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 28(2019), 12 vom: 28. Dez., Seite 6169-6184  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:28  |g year:2019  |g number:12  |g day:28  |g month:12  |g pages:6169-6184 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2922826  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2019  |e 12  |b 28  |c 12  |h 6169-6184