Border-Peeling Clustering

In this paper, we present a novel non-parametric clustering technique. Our technique is based on the notion that each latent cluster is comprised of layers that surround its core, where the external layers, or border points, implicitly separate the clusters. Unlike previous techniques, such as DBSCA...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 42(2020), 7 vom: 28. Juli, Seite 1791-1797
1. Verfasser: Averbuch-Elor, Hadar (VerfasserIn)
Weitere Verfasser: Bar, Nadav, Cohen-Or, Daniel
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM298650800
003 DE-627
005 20231225094623.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2019.2924953  |2 doi 
028 5 2 |a pubmed24n0995.xml 
035 |a (DE-627)NLM298650800 
035 |a (NLM)31251176 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Averbuch-Elor, Hadar  |e verfasserin  |4 aut 
245 1 0 |a Border-Peeling Clustering 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 05.06.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we present a novel non-parametric clustering technique. Our technique is based on the notion that each latent cluster is comprised of layers that surround its core, where the external layers, or border points, implicitly separate the clusters. Unlike previous techniques, such as DBSCAN, where the cores of the clusters are defined directly by their densities, here the latent cores are revealed by a progressive peeling of the border points. Analyzing the density of the local neighborhoods allows identifying the border points and associating them with points of inner layers. We show that the peeling process adapts to the local densities and characteristics to successfully separate adjacent clusters (of possibly different densities). We extensively tested our technique on large sets of labeled data, including high-dimensional datasets of deep features that were trained by a convolutional neural network. We show that our technique is competitive to other state-of-the-art non-parametric methods using a fixed set of parameters throughout the experiments 
650 4 |a Journal Article 
700 1 |a Bar, Nadav  |e verfasserin  |4 aut 
700 1 |a Cohen-Or, Daniel  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 42(2020), 7 vom: 28. Juli, Seite 1791-1797  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:42  |g year:2020  |g number:7  |g day:28  |g month:07  |g pages:1791-1797 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2019.2924953  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 42  |j 2020  |e 7  |b 28  |c 07  |h 1791-1797