Two-Level Approach for No-Reference Consumer Video Quality Assessment

Smartphones and other consumer devices capable of capturing video content and sharing it on social media in nearly real time are widely available at a reasonable cost. Thus, there is a growing need for no-reference video quality assessment (NR-VQA) of consumer produced video content, typically chara...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 28(2019), 12 vom: 26. Dez., Seite 5923-5938
1. Verfasser: Korhonen, Jari (VerfasserIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM298615037
003 DE-627
005 20231225094538.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2923051  |2 doi 
028 5 2 |a pubmed24n0995.xml 
035 |a (DE-627)NLM298615037 
035 |a (NLM)31247551 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Korhonen, Jari  |e verfasserin  |4 aut 
245 1 0 |a Two-Level Approach for No-Reference Consumer Video Quality Assessment 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.09.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Smartphones and other consumer devices capable of capturing video content and sharing it on social media in nearly real time are widely available at a reasonable cost. Thus, there is a growing need for no-reference video quality assessment (NR-VQA) of consumer produced video content, typically characterized by capture impairments that are qualitatively different from those observed in professionally produced video content. To date, most of the NR-VQA models in prior art have been developed for assessing coding and transmission distortions, rather than capture impairments. In addition, the most accurate NR-VQA methods known in prior art are often computationally complex, and therefore impractical for many real life applications. In this paper, we propose a new approach for learning-based video quality assessment, based on the idea of computing features in two levels so that low complexity features are computed for the full sequence first, and then high complexity features are extracted from a subset of representative video frames, selected by using the low complexity features. We have compared the proposed method against several relevant benchmark methods using three recently published annotated public video quality databases, and our results show that the proposed method can predict subjective video quality more accurately than the benchmark methods. The best performing prior method achieves nearly similar accuracy, but at substantially higher computational cost 
650 4 |a Journal Article 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 28(2019), 12 vom: 26. Dez., Seite 5923-5938  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:28  |g year:2019  |g number:12  |g day:26  |g month:12  |g pages:5923-5938 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2923051  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2019  |e 12  |b 26  |c 12  |h 5923-5938