Robust Inhibition-Augmented Operator for Delineation of Curvilinear Structures

Delineation of curvilinear structures in images is an important basic step of several image processing applications, such as segmentation of roads or rivers in aerial images, vessels or staining membranes in medical images, and cracks in pavements and roads, among others. Existing methods suffer fro...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 28(2019), 12 vom: 26. Dez., Seite 5852-5866
1. Verfasser: Strisciuglio, Nicola (VerfasserIn)
Weitere Verfasser: Azzopardi, George, Petkov, Nicolai
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM298614995
003 DE-627
005 20231225094537.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2922096  |2 doi 
028 5 2 |a pubmed24n0995.xml 
035 |a (DE-627)NLM298614995 
035 |a (NLM)31247549 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Strisciuglio, Nicola  |e verfasserin  |4 aut 
245 1 0 |a Robust Inhibition-Augmented Operator for Delineation of Curvilinear Structures 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.09.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Delineation of curvilinear structures in images is an important basic step of several image processing applications, such as segmentation of roads or rivers in aerial images, vessels or staining membranes in medical images, and cracks in pavements and roads, among others. Existing methods suffer from insufficient robustness to noise. In this paper, we propose a novel operator for the detection of curvilinear structures in images, which we demonstrate to be robust to various types of noise and effective in several applications. We call it RUSTICO, which stands for RobUST Inhibition-augmented Curvilinear Operator. It is inspired by the push-pull inhibition in visual cortex and takes as input the responses of two trainable B-COSFIRE filters of opposite polarity. The output of RUSTICO consists of a magnitude map and an orientation map. We carried out experiments on a data set of synthetic stimuli with noise drawn from different distributions, as well as on several benchmark data sets of retinal fundus images, crack pavements, and aerial images and a new data set of rose bushes used for automatic gardening. We evaluated the performance of RUSTICO by a metric that considers the structural properties of line networks (connectivity, area, and length) and demonstrated that RUSTICO outperforms many existing methods with high statistical significance. RUSTICO exhibits high robustness to noise and texture 
650 4 |a Journal Article 
700 1 |a Azzopardi, George  |e verfasserin  |4 aut 
700 1 |a Petkov, Nicolai  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 28(2019), 12 vom: 26. Dez., Seite 5852-5866  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:28  |g year:2019  |g number:12  |g day:26  |g month:12  |g pages:5852-5866 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2922096  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2019  |e 12  |b 26  |c 12  |h 5852-5866