Fullerene-Directed Synthesis of Flowerlike Cu3(PO4)2 Crystals for Efficient Photocatalytic Degradation of Dyes

Biomineralization is a typical methodology developed by nature to produce calcium-based materials. A method mimicking this process has nowadays become popular for the preparation of artificial organic-inorganic hybrids. Here, Cu3(PO4)2 crystals with a flowerlike morphology have been prepared using w...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 35(2019), 26 vom: 02. Juli, Seite 8806-8815
1. Verfasser: Chen, Mengjun (VerfasserIn)
Weitere Verfasser: Zhang, Geping, Jiang, Yue, Yin, Keyang, Zhang, Linwen, Li, Hongguang, Hao, Jingcheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Biomineralization is a typical methodology developed by nature to produce calcium-based materials. A method mimicking this process has nowadays become popular for the preparation of artificial organic-inorganic hybrids. Here, Cu3(PO4)2 crystals with a flowerlike morphology have been prepared using water-soluble derivatives of fullerene C60 as templates. In a typical system, flowerlike crystals of Cu3(PO4)2 (denoted FLCs-Cu) were obtained by simply dropping an aqueous solution of CuSO4 into phosphate-buffered saline (PBS) containing a highly water-soluble multiadduct of C60 (fullerenol). The best condition for the preparation of FLCs-Cu appeared at 0.20 mg·mL-1 fullerenol and 0.10 mol·L-1 PBS. During the formation of FLCs-Cu, fullerenol acts as a template and its content in FLCs-Cu is trace (less than 5% by atom) as confirmed by scanning electron microscopy mapping and thermogravimetric analysis. This feature makes fullerenol reusable, and the FLCs-Cu can be prepared repeatedly using the same fullerenol aqueous solution at least 10 times without a noticeable change in the morphology. The N2 adsorption/desorption isotherm showed that the doping of fullerenol increased the specific surface area of the Cu3(PO4)2 crystal. When fullerenol was replaced by C60 monoadducts that are cofunctionalized with a pyrrolidine cation and oligo(poly(ethylene oxide)) chains, FLCs-Cu can form as well, indicating that the strategy of using water-soluble C60 derivative as a template to get FLCs-Cu is universal. As a typical example of practical applications, the photocatalytic activity of the FLCs-Cu was investigated toward the degradation of dyes including rhodamine B and rhodamine 6G. In both cases, efficient photodegradation has been confirmed
Beschreibung:Date Revised 23.07.2019
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.9b00193