|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM29857831X |
003 |
DE-627 |
005 |
20231225094451.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2019 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.201903316
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0995.xml
|
035 |
|
|
|a (DE-627)NLM29857831X
|
035 |
|
|
|a (NLM)31243820
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Kim, Myeongjin
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Oxygen-Vacancy-Introduced BaSnO3- δ Photoanodes with Tunable Band Structures for Efficient Solar-Driven Water Splitting
|
264 |
|
1 |
|c 2019
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 01.10.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a To achieve excellent photoelectrochemical water-splitting activity, photoanode materials with high light absorption and good charge-separation efficiency are essential. One effective strategy for the production of materials satisfying these requirements is to adjust their band structure and corresponding bandgap energy by introducing oxygen vacancies. A simple chemical reduction method that can systematically generate oxygen vacancies in barium stannate (BaSnO3 (BSO)) crystal is introduced, which thus allows for precise control of the bandgap energy. A BSO photoanode with optimum oxygen-vacancy concentration (8.7%) exhibits high light-absorption and good charge-separation capabilities. After deposition of FeOOH/NiOOH oxygen evolution cocatalysts on its surface, this photoanode shows a remarkable photocurrent density of 7.32 mA cm-2 at a potential of 1.23 V versus a reversible hydrogen electrode under AM1.5G simulated sunlight. Moreover, a tandem device constructed with a perovskite solar cell exhibits an operating photocurrent density of 6.84 mA cm-2 and stable gas production with an average solar-to-hydrogen conversion efficiency of 7.92% for 100 h, thus functioning as an outstanding unbiased water-splitting system
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a bandgap energy
|
650 |
|
4 |
|a barium stannate
|
650 |
|
4 |
|a charge-separation efficiency
|
650 |
|
4 |
|a photoanodes
|
700 |
1 |
|
|a Lee, Byeongyong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ju, Hyun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kim, Jin Young
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kim, Jooheon
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lee, Seung Woo
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 31(2019), 33 vom: 06. Aug., Seite e1903316
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:31
|g year:2019
|g number:33
|g day:06
|g month:08
|g pages:e1903316
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.201903316
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 31
|j 2019
|e 33
|b 06
|c 08
|h e1903316
|