Effect of cell structure and heat pretreating of the microorganisms on performance of a microbial fuel cell
While microbial fuel cells are being considered as a tool for energy saving in wastewater treatment facilities, such applications in oil refineries pose a challenge due to harder acclimation of microorganisms. In this research, the effect of heat pretreating mixed culture microorganisms (MCM), and c...
Veröffentlicht in: | Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 79(2019), 9 vom: 26. Mai, Seite 1746-1754 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2019
|
Zugriff auf das übergeordnete Werk: | Water science and technology : a journal of the International Association on Water Pollution Research |
Schlagworte: | Journal Article Waste Water |
Zusammenfassung: | While microbial fuel cells are being considered as a tool for energy saving in wastewater treatment facilities, such applications in oil refineries pose a challenge due to harder acclimation of microorganisms. In this research, the effect of heat pretreating mixed culture microorganisms (MCM), and cell cross section, on the performance of a novel cell design with two cross sections (single chamber microbial fuel cells, with circular: SCMFC_CC and rectangular: SCMFC_RC cross section) fed batched with refinery wastewater were investigated. First, using original and heat pretreated MCM, the performance of SCMFC_CC in terms of chemical oxygen demand (COD) removal and electricity production was investigated. Then, using only the heat pretreated MCM, the electricity production of SCMFC_RC was measured and compared with that of SCMFC_CC. Heat pretreatment of MCM improved maximum open circuit voltage (OCV) and maximum power density generated by 14% and 16%, respectively. However, heat pretreatment reduced COD removal by about 4%. The performance of SCMFC_CC in terms of maximum OCV and power density compared to SCMFC_RC was improved by 41% and 279%, respectively. Heat treatment of MCM increases the electricity generation of the cell, while reducing the performance of COD reduction due to decreasing the microorganism varieties in the MCM |
---|---|
Beschreibung: | Date Completed 13.08.2019 Date Revised 07.12.2022 published: Print Citation Status MEDLINE |
ISSN: | 0273-1223 |
DOI: | 10.2166/wst.2019.174 |