Cumulative weather effects can impact across the whole life cycle

© 2019 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 25(2019), 10 vom: 11. Okt., Seite 3282-3293
1. Verfasser: Hindle, Bethan J (VerfasserIn)
Weitere Verfasser: Pilkington, Jill G, Pemberton, Josephine M, Childs, Dylan Z
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article Research Support, Non-U.S. Gov't North Atlantic Oscillation climate covariation density dependence environmental variation functional linear model structural equation model survival
LEADER 01000naa a22002652 4500
001 NLM298514923
003 DE-627
005 20231225094331.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.14742  |2 doi 
028 5 2 |a pubmed24n0995.xml 
035 |a (DE-627)NLM298514923 
035 |a (NLM)31237387 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hindle, Bethan J  |e verfasserin  |4 aut 
245 1 0 |a Cumulative weather effects can impact across the whole life cycle 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 25.10.2019 
500 |a Date Revised 10.01.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2019 The Authors. Global Change Biology Published by John Wiley & Sons Ltd. 
520 |a Predicting how species will be affected by future climatic change requires the underlying environmental drivers to be identified. As vital rates vary over the lifecycle, structured population models derived from statistical environment-demography relationships are often used to inform such predictions. Environmental drivers are typically identified independently for different vital rates and demographic classes. However, these rates often exhibit positive temporal covariance, suggesting that vital rates respond to common environmental drivers. Additionally, models often only incorporate average weather conditions during a single, a priori chosen time window (e.g. monthly means). Mismatches between these windows and the period when the vital rates are sensitive to variation in climate decrease the predictive performance of such approaches. We used a demographic structural equation model (SEM) to demonstrate that a single axis of environmental variation drives the majority of the (co)variation in survival, reproduction, and twinning across six age-sex classes in a Soay sheep population. This axis provides a simple target for the complex task of identifying the drivers of vital rate variation. We used functional linear models (FLMs) to determine the critical windows of three local climatic drivers, allowing the magnitude and direction of the climate effects to differ over time. Previously unidentified lagged climatic effects were detected in this well-studied population. The FLMs had a better predictive performance than selecting a critical window a priori, but not than a large-scale climate index. Positive covariance amongst vital rates and temporal variation in the effects of environmental drivers are common, suggesting our SEM-FLM approach is a widely applicable tool for exploring the joint responses of vital rates to environmental change 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a North Atlantic Oscillation 
650 4 |a climate 
650 4 |a covariation 
650 4 |a density dependence 
650 4 |a environmental variation 
650 4 |a functional linear model 
650 4 |a structural equation model 
650 4 |a survival 
700 1 |a Pilkington, Jill G  |e verfasserin  |4 aut 
700 1 |a Pemberton, Josephine M  |e verfasserin  |4 aut 
700 1 |a Childs, Dylan Z  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 25(2019), 10 vom: 11. Okt., Seite 3282-3293  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnns 
773 1 8 |g volume:25  |g year:2019  |g number:10  |g day:11  |g month:10  |g pages:3282-3293 
856 4 0 |u http://dx.doi.org/10.1111/gcb.14742  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 25  |j 2019  |e 10  |b 11  |c 10  |h 3282-3293