Anisotropic Thermal Boundary Resistance across 2D Black Phosphorus : Experiment and Atomistic Modeling of Interfacial Energy Transport

© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 31(2019), 33 vom: 19. Aug., Seite e1901021
1. Verfasser: Li, Man (VerfasserIn)
Weitere Verfasser: Kang, Joon Sang, Nguyen, Huu Duy, Wu, Huan, Aoki, Toshihiro, Hu, Yongjie
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article 2D materials interface phonon transmission thermal management time-domain thermoreflectance (TDTR) measurements
LEADER 01000naa a22002652 4500
001 NLM298460866
003 DE-627
005 20231225094216.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.201901021  |2 doi 
028 5 2 |a pubmed24n0994.xml 
035 |a (DE-627)NLM298460866 
035 |a (NLM)31231881 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Man  |e verfasserin  |4 aut 
245 1 0 |a Anisotropic Thermal Boundary Resistance across 2D Black Phosphorus  |b Experiment and Atomistic Modeling of Interfacial Energy Transport 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 01.10.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 
520 |a Interfacial thermal boundary resistance (TBR) plays a critical role in near-junction thermal management of modern electronics. In particular, TBR can dominate heat dissipation and has become increasingly important due to the continuous emergence of novel nanomaterials with promising electronic and thermal applications. A highly anisotropic TBR across a prototype 2D material, i.e., black phosphorus, is reported through a crystal-orientation-dependent interfacial transport study. The measurements show that the metal-semiconductor TBR of the cross-plane interfaces is 241% and 327% as high as that of the armchair and zigzag direction-oriented interfaces, respectively. Atomistic ab initio calculations are conducted to analyze the anisotropic and temperature-dependent TBR using density functional theory (DFT)-derived full phonon dispersion relation and molecular dynamics simulation. The measurement and modeling work reveals that such a highly anisotropic TBR can be attributed to the intrinsic band structure and phonon spectral transmission. Furthermore, it is shown that phonon hopping between different branches is important to modulate the interfacial transport process but with directional preferences. A critical fundamental understanding of interfacial thermal transport and TBR-structure relationships is provided, which may open up new opportunities in developing advanced thermal management technology through the rational control over nanostructures and interfaces 
650 4 |a Journal Article 
650 4 |a 2D materials 
650 4 |a interface phonon transmission 
650 4 |a thermal management 
650 4 |a time-domain thermoreflectance (TDTR) measurements 
700 1 |a Kang, Joon Sang  |e verfasserin  |4 aut 
700 1 |a Nguyen, Huu Duy  |e verfasserin  |4 aut 
700 1 |a Wu, Huan  |e verfasserin  |4 aut 
700 1 |a Aoki, Toshihiro  |e verfasserin  |4 aut 
700 1 |a Hu, Yongjie  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 31(2019), 33 vom: 19. Aug., Seite e1901021  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:31  |g year:2019  |g number:33  |g day:19  |g month:08  |g pages:e1901021 
856 4 0 |u http://dx.doi.org/10.1002/adma.201901021  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2019  |e 33  |b 19  |c 08  |h e1901021