Tobacco transcription repressors NtJAZ : Potential involvement in abiotic stress response and glandular trichome induction

Copyright © 2019. Published by Elsevier Masson SAS.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 141(2019) vom: 01. Aug., Seite 388-397
1. Verfasser: Zhang, Hongying (VerfasserIn)
Weitere Verfasser: Li, Wenjiao, Niu, Dexin, Wang, Zhaojun, Yan, Xiaoxiao, Yang, Xinling, Yang, Yongfeng, Cui, Hong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Abiotic stress Expression pattern Glandular trichome Hormone treatment JASMONATE-ZIM domain Nicotiana tabacum Acetates Cyclopentanes Oxylipins mehr... Plant Growth Regulators Plant Proteins Repressor Proteins Transcription Factors jasmonic acid 6RI5N05OWW methyl jasmonate 900N171A0F
Beschreibung
Zusammenfassung:Copyright © 2019. Published by Elsevier Masson SAS.
Members of the Jasmonate ZIM domain (JAZ) proteins act as transcriptional repressors in the jasmonate (JA) hormonal response. To characterize the potential roles of JAZ gene family in plant development and abiotic stress response, fifteen JAZs were identified based on the genome of Nicotiana tabacum. Structural analysis confirmed the presence of single Jas and TIFY motif. Tissue expression pattern analysis indicated that NtJAZ-2, -3, -5, and -10 were highly expressed in roots and NtJAZ-11 was expressed only in the cotyledons. The transcript level of NtJAZ-3, -5, -9, and -10 in the stem epidermis was higher than that in the stem without epidermis. Dynamic expression of NtJAZs exposed to abiotic stress and phytohormone indicated that the expression of most NtJAZs was activated by salicylic acid, methyl jasmonate, gibberellic acid, cold, salt, and heat stresses. With abscisic acid treatment, NtJAZ-1, -2, and -3 were not activated; NtJAZ-4, -5, and -6 were up-regulated; and the remaining NtJAZ genes were inhibited. With drought stress, the expression of NtJAZ-1, -2, -3, -4, -5, -6, -7, and -8 was up-regulated, whereas the transcript of the remaining genes was inhibited. Moreover, high concentration MeJA (more than 1 mM MeJA) had an effect on secreting trichome induction, but inhabited the plant growth. Nine NtJAZs may play important role in secreting trichome induction. These results indicate that the JAZ proteins are convergence points for various phytohormone signal networks, which are involved in abiotic stress responses
Beschreibung:Date Completed 05.08.2019
Date Revised 13.12.2023
published: Print-Electronic
Citation Status MEDLINE
ISSN:1873-2690
DOI:10.1016/j.plaphy.2019.06.021