Predicting the Quality of Images Compressed after Distortion in Two Steps

In a typical communication pipeline, images undergo a series of processing steps that can cause visual distortions before being viewed. Given a high quality reference image, a reference (R) image quality assessment (IQA) algorithm can be applied after compression or transmission. However, the assump...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2019) vom: 19. Juni
1. Verfasser: Yu, Xiangxu (VerfasserIn)
Weitere Verfasser: Bampis, Christos G, Gupta, Praful, Bovik, Alan C
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM298403242
003 DE-627
005 20240229162232.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2922850  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM298403242 
035 |a (NLM)31226076 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yu, Xiangxu  |e verfasserin  |4 aut 
245 1 0 |a Predicting the Quality of Images Compressed after Distortion in Two Steps 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a In a typical communication pipeline, images undergo a series of processing steps that can cause visual distortions before being viewed. Given a high quality reference image, a reference (R) image quality assessment (IQA) algorithm can be applied after compression or transmission. However, the assumption of a high quality reference image is often not fulfilled in practice, thus contributing to less accurate quality predictions when using stand-alone R IQA models. This is particularly common on social media, where hundreds of billions of usergenerated photos and videos containing diverse, mixed distortions are uploaded, compressed, and shared annually on sites like Facebook, YouTube, and Snapchat. The qualities of the pictures that are uploaded to these sites vary over a very wide range. While this is an extremely common situation, the problem of assessing the qualities of compressed images against their precompressed, but often severely distorted (reference) pictures has been little studied. Towards ameliorating this problem, we propose a novel two-step image quality prediction concept that combines NR with R quality measurements. Applying a first stage of NR IQA to determine the possibly degraded quality of the source image yields information that can be used to quality-modulate the R prediction to improve its accuracy. We devise a simple and efficient weighted product model of R and NR stages, which combines a pre-compression NR measurement with a post-compression R measurement. This first-of-a-kind two-step approach produces more reliable objective prediction scores. We also constructed a new, first-of-a-kind dedicated database specialized for the design and testing of two-step IQA models. Using this new resource, we show that twostep approaches yield outstanding performance when applied to compressed images whose original, pre-compression quality covers a wide range of realistic distortion types and severities. The two-step concept is versatile as it can use any desired R and NR components. We are making the source code of a particularly efficient model that we call 2stepQA publicly available at https://github.com/xiangxuyu/2stepQA. We are also providing the dedicated new two-step database free of charge at http://live.ece.utexas.edu/research/twostep/index.html 
650 4 |a Journal Article 
700 1 |a Bampis, Christos G  |e verfasserin  |4 aut 
700 1 |a Gupta, Praful  |e verfasserin  |4 aut 
700 1 |a Bovik, Alan C  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2019) vom: 19. Juni  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2019  |g day:19  |g month:06 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2922850  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2019  |b 19  |c 06