High-Resolution Encoder-Decoder Networks for Low-Contrast Medical Image Segmentation

Automatic image segmentation is an essential step for many medical image analysis applications, include computer-aided radiation therapy, disease diagnosis, and treatment effect evaluation. One of the major challenges for this task is the blurry nature of medical images (e.g., CT, MR and, microscopi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2019) vom: 19. Juni
1. Verfasser: Zhou, Sihang (VerfasserIn)
Weitere Verfasser: Nie, Dong, Adeli, Ehsan, Yin, Jianping, Lian, Jun, Shen, Dinggang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM298403226
003 DE-627
005 20240402232230.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2919937  |2 doi 
028 5 2 |a pubmed24n1360.xml 
035 |a (DE-627)NLM298403226 
035 |a (NLM)31226074 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhou, Sihang  |e verfasserin  |4 aut 
245 1 0 |a High-Resolution Encoder-Decoder Networks for Low-Contrast Medical Image Segmentation 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 02.04.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Automatic image segmentation is an essential step for many medical image analysis applications, include computer-aided radiation therapy, disease diagnosis, and treatment effect evaluation. One of the major challenges for this task is the blurry nature of medical images (e.g., CT, MR and, microscopic images), which can often result in low-contrast and vanishing boundaries. With the recent advances in convolutional neural networks, vast improvements have been made for image segmentation, mainly based on the skip-connection-linked encoder-decoder deep architectures. However, in many applications (with adjacent targets in blurry images), these models often fail to accurately locate complex boundaries and properly segment tiny isolated parts. In this paper, we aim to provide a method for blurry medical image segmentation and argue that skip connections are not enough to help accurately locate indistinct boundaries. Accordingly, we propose a novel high-resolution multi-scale encoder-decoder network (HMEDN), in which multi-scale dense connections are introduced for the encoder-decoder structure to finely exploit comprehensive semantic information. Besides skip connections, extra deeply-supervised high-resolution pathways (comprised of densely connected dilated convolutions) are integrated to collect high-resolution semantic information for accurate boundary localization. These pathways are paired with a difficulty-guided cross-entropy loss function and a contour regression task to enhance the quality of boundary detection. Extensive experiments on a pelvic CT image dataset, a multi-modal brain tumor dataset, and a cell segmentation dataset show the effectiveness of our method for 2D/3D semantic segmentation and 2D instance segmentation, respectively. Our experimental results also show that besides increasing the network complexity, raising the resolution of semantic feature maps can largely affect the overall model performance. For different tasks, finding a balance between these two factors can further improve the performance of the corresponding network 
650 4 |a Journal Article 
700 1 |a Nie, Dong  |e verfasserin  |4 aut 
700 1 |a Adeli, Ehsan  |e verfasserin  |4 aut 
700 1 |a Yin, Jianping  |e verfasserin  |4 aut 
700 1 |a Lian, Jun  |e verfasserin  |4 aut 
700 1 |a Shen, Dinggang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2019) vom: 19. Juni  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2019  |g day:19  |g month:06 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2919937  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2019  |b 19  |c 06