Zig-Zag Network for Semantic Segmentation of RGB-D Images

Semantic segmentation of images requires an understanding of appearances of objects and their spatial relationships in scenes. The fully convolutional network (FCN) has been successfully applied to recognize objects' appearances, which are represented with RGB channels. Images augmented with de...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 42(2020), 10 vom: 25. Okt., Seite 2642-2655
1. Verfasser: Lin, Di (VerfasserIn)
Weitere Verfasser: Huang, Hui
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652c 4500
001 NLM298403129
003 DE-627
005 20250225122756.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2019.2923513  |2 doi 
028 5 2 |a pubmed25n0994.xml 
035 |a (DE-627)NLM298403129 
035 |a (NLM)31226067 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lin, Di  |e verfasserin  |4 aut 
245 1 0 |a Zig-Zag Network for Semantic Segmentation of RGB-D Images 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 12.02.2021 
500 |a Date Revised 12.02.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Semantic segmentation of images requires an understanding of appearances of objects and their spatial relationships in scenes. The fully convolutional network (FCN) has been successfully applied to recognize objects' appearances, which are represented with RGB channels. Images augmented with depth channels provide more understanding of the geometric information of the scene in an image. In this paper, we present a multiple-branch neural network to utilize depth information to assist in the semantic segmentation of images. Our approach splits the image into layers according to the "scene-scale". We introduce the context-aware receptive field (CARF), which provides better control of the relevant context information of learned features. Each branch of the network is equipped with CARF to adaptively aggregate the context information of image regions, leading to a more focused domain that is easier to learn. Furthermore, we propose a new zig-zag architecture to exchange information between the feature maps at different levels, augmented by the CARFs of the backbone network and decoder network. With the flexible information propagation allowed by our zig-zag network, we enrich the context information of feature maps for the segmentation. We show that the zig-zag network achieves state-of-the-art performances on several public datasets 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Huang, Hui  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 42(2020), 10 vom: 25. Okt., Seite 2642-2655  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:42  |g year:2020  |g number:10  |g day:25  |g month:10  |g pages:2642-2655 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2019.2923513  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 42  |j 2020  |e 10  |b 25  |c 10  |h 2642-2655