Flow Field Reduction Via Reconstructing Vector Data From 3-D Streamlines Using Deep Learning

We present a new approach for streamline-based flow field representation and reduction. Our method can work in the in situ visualization setting by tracing streamlines from each time step of the simulation and storing compressed streamlines for post hoc analysis where users can afford longer reconst...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE computer graphics and applications. - 1997. - 39(2019), 4 vom: 25. Juli, Seite 54-67
1. Verfasser: Han, Jun (VerfasserIn)
Weitere Verfasser: Tao, Jun, Zheng, Hao, Guo, Hanqi, Chen, Danny Z, Wang, Chaoli
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE computer graphics and applications
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM298403064
003 DE-627
005 20250225122756.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/MCG.2018.2881523  |2 doi 
028 5 2 |a pubmed25n0994.xml 
035 |a (DE-627)NLM298403064 
035 |a (NLM)31226060 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Han, Jun  |e verfasserin  |4 aut 
245 1 0 |a Flow Field Reduction Via Reconstructing Vector Data From 3-D Streamlines Using Deep Learning 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 23.07.2019 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We present a new approach for streamline-based flow field representation and reduction. Our method can work in the in situ visualization setting by tracing streamlines from each time step of the simulation and storing compressed streamlines for post hoc analysis where users can afford longer reconstruction time for higher reconstruction quality using decompressed streamlines. At the heart of our approach is a deep learning method for vector field reconstruction that takes the streamlines traced from the original vector fields as input and applies a two-stage process to reconstruct high-quality vector fields. To demonstrate the effectiveness of our approach, we show qualitative and quantitative results with several data sets and compare our method against the de facto method of gradient vector flow in terms of speed and quality tradeoff 
650 4 |a Journal Article 
700 1 |a Tao, Jun  |e verfasserin  |4 aut 
700 1 |a Zheng, Hao  |e verfasserin  |4 aut 
700 1 |a Guo, Hanqi  |e verfasserin  |4 aut 
700 1 |a Chen, Danny Z  |e verfasserin  |4 aut 
700 1 |a Wang, Chaoli  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE computer graphics and applications  |d 1997  |g 39(2019), 4 vom: 25. Juli, Seite 54-67  |w (DE-627)NLM098172794  |x 1558-1756  |7 nnns 
773 1 8 |g volume:39  |g year:2019  |g number:4  |g day:25  |g month:07  |g pages:54-67 
856 4 0 |u http://dx.doi.org/10.1109/MCG.2018.2881523  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 39  |j 2019  |e 4  |b 25  |c 07  |h 54-67