Self-Supported and Flexible Sulfur Cathode Enabled via Synergistic Confinement for High-Energy-Density Lithium-Sulfur Batteries

© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 31(2019), 33 vom: 30. Aug., Seite e1902228
1. Verfasser: Wang, Zhuosen (VerfasserIn)
Weitere Verfasser: Shen, Jiadong, Liu, Jun, Xu, Xijun, Liu, Zhengbo, Hu, Renzong, Yang, Lichun, Feng, Yuezhan, Shi, Zhicong, Ouyang, Liuzhang, Yu, Yan, Zhu, Min
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Li-S batteries flexible electrodes high sulfur loading self-supported arrays synergistic confinement
Beschreibung
Zusammenfassung:© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lithium-sulfur (Li-S) batteries have attracted much attention in the field of electrochemical energy storage due to their high energy density and low cost. However, the "shuttle effect" of the sulfur cathode, resulting in poor cyclic performance, is a big barrier for the development of Li-S batteries. Herein, a novel sulfur cathode integrating sulfur, flexible carbon cloth, and metal-organic framework (MOF)-derived N-doped carbon nanoarrays with embedded CoP (CCCoP/C) is designed. These unique flexible nanoarrays with embedded polar CoP nanoparticles not only offer enough voids for volume expansion to maintain the structural stability during the electrochemical process, but also promote the physical encapsulation and chemical entrapment of all sulfur species. Such designed CC@CoP/C cathodes with synergistic confinement (physical adsorption and chemical interactions) for soluble intermediate lithium polysulfides possess high sulfur loadings (as high as 4.17 mg cm-2 ) and exhibit large specific capacities at different C-rates. Specially, an outstanding long-term cycling performance can be reached. For example, an ultralow decay of 0.016% per cycle during the whole 600 cycles at a high current density of 2C is displayed. The current work provides a promising design strategy for high-energy-density Li-S batteries
Beschreibung:Date Revised 30.09.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.201902228