The role of solid waste composting in mitigating climate change in Jordan

Solid waste composting has never been practised on a full scale in Jordan. However, the National Solid Waste Management Strategy recommended five major composting facilities to be put into operation starting from 2025. According to the Ministry of Environment, the waste sector is contributing to 10....

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA. - 1991. - 37(2019), 8 vom: 01. Aug., Seite 833-842
1. Verfasser: Abu Qdais, Hani (VerfasserIn)
Weitere Verfasser: Wuensch, Christoph, Dornack, Christina, Nassour, Abdallah
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA
Schlagworte:Journal Article Jordan Solid waste climate change composting mitigation Solid Waste
Beschreibung
Zusammenfassung:Solid waste composting has never been practised on a full scale in Jordan. However, the National Solid Waste Management Strategy recommended five major composting facilities to be put into operation starting from 2025. According to the Ministry of Environment, the waste sector is contributing to 10.6% of the total greenhouse gas emissions of the country. The main objective of this study was to assess the potential of solid waste composting in mitigating greenhouse gas emissions in Jordan. Applying the upstream-operating-downstream account framework and developing a model that estimates the greenhouse gas emissions, it was possible to estimate the emissions associated with composting of source-segregated bio-waste, which was compared with three other scenarios, including business as usual (dumping and landfilling), sanitary landfilling, and anaerobic digestion. The assessment revealed that composting and anaerobic digestion of the total generated source-segregated bio-waste (Scenarios 3 and 4) have the least net greenhouse gas emissions with 1.1 million Mg CO2-eq y-1, while engineered sanitary landfilling and dumping have net emissions of 2.6 and 3.75 million Mg CO2-eq y-1, respectively. The findings of this research are paving the way to make informed and responsible decisions in the Jordanian solid waste sector to adopt sustainable and integrated management options
Beschreibung:Date Completed 09.09.2019
Date Revised 09.09.2019
published: Print-Electronic
Citation Status MEDLINE
ISSN:1096-3669
DOI:10.1177/0734242X19855424