Relationships between NMR shifts and interaction energies in biphenyls, alkanes, aza-alkanes, and oxa-alkanes with X─H… H─Y and X─H… Z (X, Y = C or N; Z = N or O) hydrogen bonding

© 2019 John Wiley & Sons, Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in chemistry : MRC. - 1985. - 57(2019), 12 vom: 19. Dez., Seite 1121-1135
1. Verfasser: Lomas, John S (VerfasserIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Magnetic resonance in chemistry : MRC
Schlagworte:Journal Article Research Support, Non-U.S. Gov't IQA NCI NMR shifts QTAIM hydrogen bonding interaction energies
Beschreibung
Zusammenfassung:© 2019 John Wiley & Sons, Ltd.
Hydrogen-hydrogen C─H… H─C bonding between the bay-area hydrogens in biphenyls, and more generally in congested alkanes, very strained polycyclic alkanes, and cis-2-butene, has been investigated by calculation of proton nuclear magnetic resonance (NMR) shifts and atom-atom interaction energies. Computed NMR shifts for all protons in the biphenyl derivatives correlate very well with experimental data, with zero intercept, unit slope, and a root mean square deviation of 0.06 ppm. For some congested alkanes, there is generally good agreement between computed values for a selected conformer and the experimental data, when it is available. In both cases, the shift of a given proton or pair of protons tends to increase with the corresponding interaction energy. Computed NMR shift differences for methylene protons in polycyclic alkanes, where one is involved in a very short contact ("in") and the other is not ("out"), show a rough correlation with the corresponding C─H… H─C exchange energies. The "in" and "in,in" isomers of selected aza- and diaza-cycloalkanes, respectively, are X─H… H─N hydrogen bonded, whereas the "out" and "in,out" isomers display X─H… N hydrogen bonds (X = C or N). Oxa-alkanes and the "in" isomers of aza-oxa-alkanes are X─H… O hydrogen bonded. There is a very good general correlation, including both N─H… H─Y (Y = C or N) and N─H… Z (Z = N or O) interactions, for NH proton shifts against the exchange energy. For "in" CH protons, the data for the different C─H… H─Y and C─H… Z interactions are much more dispersed and the overall shift/exchange energy correlation is less satisfactory
Beschreibung:Date Completed 21.11.2019
Date Revised 08.01.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1097-458X
DOI:10.1002/mrc.4900