Foreground Gating and Background Refining Network for Surveillance Object Detection

Detecting objects in surveillance videos is an important problem due to its wide applications in traffic control and public security. Existing methods tend to face performance degradation because of false positive or misalignment problems. We propose a novel framework, namely, Foreground Gating and...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 28(2019), 12 vom: 14. Dez., Seite 6077-6090
1. Verfasser: Fu, Zhihang (VerfasserIn)
Weitere Verfasser: Chen, Yaowu, Yong, Hongwei, Jiang, Rongxin, Zhang, Lei, Hua, Xian-Sheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM298332949
003 DE-627
005 20231225093928.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2922095  |2 doi 
028 5 2 |a pubmed24n0994.xml 
035 |a (DE-627)NLM298332949 
035 |a (NLM)31217115 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Fu, Zhihang  |e verfasserin  |4 aut 
245 1 0 |a Foreground Gating and Background Refining Network for Surveillance Object Detection 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 09.09.2019 
500 |a Date Revised 09.09.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Detecting objects in surveillance videos is an important problem due to its wide applications in traffic control and public security. Existing methods tend to face performance degradation because of false positive or misalignment problems. We propose a novel framework, namely, Foreground Gating and Background Refining Network (FG-BR Net), for surveillance object detection (SOD). To reduce false positives in background regions, which is a critical problem in SOD, we introduce a new module that first subtracts the background of a video sequence and then generates high-quality region proposals. Unlike previous background subtraction methods that may wrongly remove the static foreground objects in a frame, a feedback connection from detection results to background subtraction process is proposed in our model to distill both static and moving objects in surveillance videos. Furthermore, we introduce another module, namely, the background refining stage, to refine the detection results with more accurate localizations. Pairwise non-local operations are adopted to cope with the misalignments between the features of original and background frames. Extensive experiments on real-world traffic surveillance benchmarks demonstrate the competitive performance of the proposed FG-BR Net. In particular, FG-BR Net ranks on the top among all the methods on hard and sunny subsets of the UA-DETRAC detection dataset, without any bells and whistles 
650 4 |a Journal Article 
700 1 |a Chen, Yaowu  |e verfasserin  |4 aut 
700 1 |a Yong, Hongwei  |e verfasserin  |4 aut 
700 1 |a Jiang, Rongxin  |e verfasserin  |4 aut 
700 1 |a Zhang, Lei  |e verfasserin  |4 aut 
700 1 |a Hua, Xian-Sheng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 28(2019), 12 vom: 14. Dez., Seite 6077-6090  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:28  |g year:2019  |g number:12  |g day:14  |g month:12  |g pages:6077-6090 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2922095  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2019  |e 12  |b 14  |c 12  |h 6077-6090