Pseudo-Marginal MCMC Sampling for Image Segmentation Using Nonparametric Shape Priors
Segmenting images of low quality or with missing data is a challenging problem. In such scenarios, exploiting statistical prior information about the shapes to be segmented can improve the segmentation results significantly. Incorporating prior density of shapes into a Bayesian framework leads to th...
Publié dans: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 28(2019), 11 vom: 14. Nov., Seite 5702-5715 |
---|---|
Auteur principal: | |
Autres auteurs: | , , |
Format: | Article en ligne |
Langue: | English |
Publié: |
2019
|
Accès à la collection: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
Sujets: | Journal Article |
Accès en ligne |
Volltext |