Multiple-Instance Discriminant Analysis for Weakly Supervised Segment Annotation

In this paper, we propose a multiple-instance discriminant analysis algorithm for weakly supervised segment annotation. We introduce a selection parameter for each image/video with weak labels and expect that it can sift out object regions from the background clutter to train a better transformation...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 28(2019), 11 vom: 14. Nov., Seite 5716-5728
1. Verfasser: Wang, Liantao (VerfasserIn)
Weitere Verfasser: Li, Qingwu, Zhou, Yan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM298332884
003 DE-627
005 20231225093928.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2921878  |2 doi 
028 5 2 |a pubmed24n0994.xml 
035 |a (DE-627)NLM298332884 
035 |a (NLM)31217109 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Liantao  |e verfasserin  |4 aut 
245 1 0 |a Multiple-Instance Discriminant Analysis for Weakly Supervised Segment Annotation 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.09.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we propose a multiple-instance discriminant analysis algorithm for weakly supervised segment annotation. We introduce a selection parameter for each image/video with weak labels and expect that it can sift out object regions from the background clutter to train a better transformation vector. The selection parameter and the transformation parameter are incorporated into a single objective function and optimized in an alternate way. The optimization is an iteration between the eigenvalue decomposition and a set of quadratic programming. We also integrate a regularization term into the objective function to formulate the spatial constraint of segments, which is ignored in ordinary multiple-instance learning methods. The algorithm is able to overcome the limitations that arise when applying ordinary multiple-instance methods to the task. The experimental results validate the effectiveness of our method 
650 4 |a Journal Article 
700 1 |a Li, Qingwu  |e verfasserin  |4 aut 
700 1 |a Zhou, Yan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 28(2019), 11 vom: 14. Nov., Seite 5716-5728  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:28  |g year:2019  |g number:11  |g day:14  |g month:11  |g pages:5716-5728 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2921878  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2019  |e 11  |b 14  |c 11  |h 5716-5728