Subjective and Objective Quality Assessment of Stitched Images for Virtual Reality

We consider the problem of quality assessment (QA) of image stitching algorithms used to generate panoramic images for virtual reality applications. Our contributions are two-fold. We design the Indian Institute of Science Stitched Image QA (ISIQA) database consisting of 264 stitched images and 6600...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 28(2019), 11 vom: 17. Nov., Seite 5620-5635
1. Verfasser: Madhusudana, Pavan Chennagiri (VerfasserIn)
Weitere Verfasser: Soundararajan, Rajiv
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM298332841
003 DE-627
005 20231225093928.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2921858  |2 doi 
028 5 2 |a pubmed24n0994.xml 
035 |a (DE-627)NLM298332841 
035 |a (NLM)31217105 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Madhusudana, Pavan Chennagiri  |e verfasserin  |4 aut 
245 1 0 |a Subjective and Objective Quality Assessment of Stitched Images for Virtual Reality 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.09.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We consider the problem of quality assessment (QA) of image stitching algorithms used to generate panoramic images for virtual reality applications. Our contributions are two-fold. We design the Indian Institute of Science Stitched Image QA (ISIQA) database consisting of 264 stitched images and 6600 human quality ratings. The database consists of a variety of artifacts due to stitching such as blur, ghosting, photometric, and geometric distortions. We then devise an objective QA model called the stitched image quality evaluator (SIQE) using the statistics of steerable pyramid decompositions. In particular, we propose a Gaussian mixture model to capture the bivariate statistics of neighboring coefficients of steerable pyramid decompositions and show this to be effective in modeling the increased spatial correlation due to ghosting artifacts. We show through extensive experiments that our quality model correlates very well with subjective scores in the ISIQA database. The ISIQA database as well as the software release of SIQE has been made available online for public use and evaluation purposes 
650 4 |a Journal Article 
700 1 |a Soundararajan, Rajiv  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 28(2019), 11 vom: 17. Nov., Seite 5620-5635  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:28  |g year:2019  |g number:11  |g day:17  |g month:11  |g pages:5620-5635 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2921858  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2019  |e 11  |b 17  |c 11  |h 5620-5635